# START # input data: dt <- data.table( "time"=rep(1:2, each=5), "coicop"=rep(c("01111","01112","0112","0113","021"), times=2), "price"=c(105,103,102,99,120, 105,104,110,98,125), "weight"=rep(c(0.05,0.15,0.3,0.2,0.3), times=2), "weight_lag"=rep(c(0.03,0.12,0.33,0.2,0.32), times=2)) # aggregate with package function: res.pkg <- dt[, aggregate(x=price, w0=weight, wt=weight_lag, grp=coicop), by="time"] # aggregate manually: A <- dt[coicop%in%c("01111","01112"), list("coicop"="0111", "price"=laspey(x=price, w0=weight), "weight"=sum(weight), "weight_lag"=sum(weight_lag)), by="time"] B <- rbindlist(l=list(A, dt[coicop%in%c("0112","0113"),])) B <- B[, list("coicop"="011", "price"=laspey(x=price, w0=weight), "weight"=sum(weight), "weight_lag"=sum(weight_lag)), by="time"] C1 <- copy(B) C1[, "coicop":="01"] C2 <- dt[coicop%in%"021", list(time, "coicop"="02", price, weight, weight_lag)] D <- rbindlist(l=list(C1,C2)) D <- D[, list("coicop"="00", "price"=laspey(x=price, w0=weight), "weight"=sum(weight), "weight_lag"=sum(weight_lag)), by="time"] res.own <- rbindlist(l=list(A,B,C1,C2,D)) res.own[, "is_aggregated":=TRUE] res.own <- rbindlist( l=list(res.own, dt[coicop%in%c("01111","01112","0112","0113","021"),]), use.names=TRUE, fill=TRUE) res.own[is.na(is_aggregated), "is_aggregated":=FALSE] setorderv(x=res.own, c("time","coicop")) setnames(x=res.own, c("time","grp","laspey","w0","wt","is_aggregated")) setcolorder(x=res.own, neworder=names(res.pkg)) # compare results: expect_equal(res.own, res.pkg) # check for errors: expect_error( dt[, aggregate(x=price, wt=weight, index=laspey), by="time"] ) expect_error( dt[, aggregate(x=price, wt=weight, index=list(mean)), by="time"] ) expect_error( dt[, aggregate(x=price, wt=weight, index=list("mean"=function(x) mean(x))), by="time"] ) # END