R Under development (unstable) (2024-11-05 r87288 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # This file is part of the standard setup for testthat. > # It is recommended that you do not modify it. > # > # Where should you do additional test configuration? > # Learn more about the roles of various files in: > # * https://r-pkgs.org/tests.html > # * https://testthat.r-lib.org/reference/test_package.html#special-files > > library(testthat) > library(hgwrr) Loading required package: sf Linking to GEOS 3.12.1, GDAL 3.8.4, PROJ 9.3.1; sf_use_s2() is TRUE Loading required package: MASS > > test_check("hgwrr") Hierarchical and geographically weighted regression model ========================================================= Formula: y ~ L(g1 + g2) + x1 + (z1 | group) Method: Back-fitting and Maximum likelihood Data: mulsam.test$data Fixed Effects ------------- Intercept x1 1.852190 1.967644 Group-level Spatially Weighted Effects -------------------------------------- Bandwidth: 10 (nearest neighbours) Coefficient estimates: Coefficient Min 1st Quartile Median 3rd Quartile Max Intercept -0.549094 -0.439522 -0.151433 -0.024133 0.178044 g1 0.909293 1.253143 1.692616 1.927313 2.310056 g2 1.083410 1.279953 1.415744 1.594576 1.693768 Sample-level Random Effects --------------------------- Groups Name Std.Dev. Corr group Intercept 1.033171 z1 1.033171 0.000000 Residual 1.033171 Other Information ----------------- Number of Obs: 873 Groups: group , 25 Hierarchical and geographically weighted regression model ========================================================= Formula: y ~ L(g1 + g2) + x1 + (z1 | group) Method: Back-fitting and Maximum likelihood Data: mulsam.test$data Fixed Effects ------------- Intercept x1 1.852190 1.967644 Group-level Spatially Weighted Effects -------------------------------------- Bandwidth: 10 (nearest neighbours) Coefficient estimates: Coefficient Min 1st Quartile Median 3rd Quartile Max Intercept -0.549094 -0.439522 -0.151433 -0.024133 0.178044 g1 0.909293 1.253143 1.692616 1.927313 2.310056 g2 1.083410 1.279953 1.415744 1.594576 1.693768 Sample-level Random Effects --------------------------- Groups Name Std.Dev. Corr group Intercept 1.033171 z1 1.033171 0.000000 Residual 1.033171 Other Information ----------------- Number of Obs: 873 Groups: group , 25 Hierarchical and geographically weighted regression model ========================================================= Formula: y ~ L(g1 + g2) + x1 + (z1 | group) Method: Back-fitting and Maximum likelihood Data: mulsam.test$data Parameter Estimates ------------------- Fixed effects: Estimated Sd. Err t.val Pr(>|t|) Intercept 1.852190 0.203079 9.120541 0.000000 *** x1 1.967644 0.033827 58.168539 0.000000 *** Bandwidth: 10 (nearest neighbours) GLSW effects: Mean Est. Mean Sd. *** ** * . Intercept -0.208441 0.247059 0.0% 0.0% 4.0% 24.0% g1 1.631474 1.795246 0.0% 0.0% 0.0% 0.0% g2 1.430116 1.476570 0.0% 0.0% 0.0% 0.0% SLR effects: Groups Name Mean Std.Dev. Corr group Intercept 0.000000 1.033171 z1 1.869539 1.033171 0.000000 Residual 0.079964 1.033171 Diagnostics ----------- rsquared 0.905207 logLik NaN AIC NaN Scaled Residuals ---------------- Min 1Q Median 3Q Max -3.416380 -0.584726 0.092501 0.725766 3.028003 Other Information ----------------- Number of Obs: 873 Groups: group , 25 NULL NULL Length Class Mode 0 NULL NULL NULL NULL Length Class Mode 0 NULL NULL NULL NULL Length Class Mode 0 NULL NULL NULL NULL Length Class Mode 0 NULL NULL NULL NULL Length Class Mode 0 NULL NULL NULL NULL Length Class Mode 0 NULL NULL [ FAIL 0 | WARN 0 | SKIP 0 | PASS 96 ] > > proc.time() user system elapsed 66.01 0.34 66.34