test_that( "Same results using 1 core or 2.", { library(parallel) result_1core <- run_model_tabular( location = system.file("tabular/thr", package = "heemod"), save = FALSE, overwrite = FALSE, run_psa = FALSE ) result_2core <- run_model_tabular( location = system.file("tabular/thr", package = "heemod"), reference = "REFERENCE_2core.csv", save = FALSE, overwrite = FALSE, run_psa = FALSE ) ## the objects contain environments, so we can't use identical; ## instead, we'll check parts that use multi-core processing ## ## parameters from the discrete sensitivity analysis expect_identical( sapply(result_1core$dsa$dsa$.par_value, eval_tidy), sapply(result_2core$dsa$dsa$.par_value, eval_tidy) ) ## counts from all models from the discrete sensitivity analysis expect_identical( get_counts(get_model(result_1core$dsa)), get_counts(get_model(result_2core$dsa))) ## demographic analysis expect_equal( result_1core$demographics$updated_model[-3], result_2core$demographics$updated_model[-3], ignore_attr = TRUE) } )