library(testthat) # Test Cases test_that("paf function calculates paf correctly", { # Create sample data ## Non-ordered set.seed(123) pop <- round(rnorm(25, 1000, 300)) est <- rbinom(25, 1000, .065) se <- rbinom(25, 100, .045) ordered <- rep(0, 25) fav <- rep(1, 25) scale <- rep(100, 25) ref <- rep(0, 25) ref[sample(25, 1)] <- 1 # Call the paf function result <- paf(pop = pop, est = est, se = se, scaleval = scale, ordered_dimension = ordered, favourable_indicator = fav) # Expected values expected_paf <- 24.06426 expected_se <- .01771526 expected_lowerci <- 24.029539 expected_upperci <- 24.098982 # Compare the calculated values with the expected values expect_equal(result$estimate, expected_paf, tolerance = 1e-4) expect_equal(result$se, expected_se, tolerance = 1e-4) expect_equal(result$lowerci, expected_lowerci, tolerance = 1e-6) expect_equal(result$upperci, expected_upperci, tolerance = 1e-6) })