test_that("print works correctly", { library(survival) withr::local_seed(1234) temp <- generate_cure_data(n = 100, j = 10, n_true = 10, a = 1.8) training <- temp$training fit <- curegmifs(Surv(Time, Censor) ~ ., data = training, x_latency = training, model = "weibull", thresh = 1e-4, maxit = 2000, epsilon = 0.01, verbose = FALSE ) result <- print(fit) expect_true(is.list(result)) result %>% expect_length(15) expect_equal(names(result), c("b_path", "beta_path", "b0_path", "rate_path", "logLik", "x_incidence", "x_latency", "y", "model", "scale", "method", "call", "alpha_path", "cv", "warning" )) expect_equal(round(mean(result$alpha_path), 6), 0.978436) expect_warning(curegmifs(Surv(Time, Censor) ~ ., data = training, x_latency = training, model = "exponential", thresh = 1e-4, maxit = 2000, epsilon = 0.01, verbose = FALSE )) fit.cv <- cv_cureem(Surv(Time, Censor) ~ ., data = training, x_latency = training, fdr_control = FALSE, grid_tuning = FALSE, nlambda_inc = 10, nlambda_lat = 10, n_folds = 2, seed = 23, verbose = TRUE ) result <- print(fit.cv) expect_true(is.list(result)) result %>% expect_length(18) expect_visible(result) fit.cv.fdr <- cv_cureem(Surv(Time, Censor) ~ ., data = training, x_latency = training, model = "weibull", penalty = "lasso", fdr_control = TRUE, grid_tuning = FALSE, nlambda_inc = 10, nlambda_lat = 10, n_folds = 2, seed = 23, verbose = TRUE ) result <- print(fit.cv.fdr) expect_true(is.list(result)) result %>% expect_length(17) expect_visible(result) })