#' @srrstats {G5.5} *Correctness tests should be run with a fixed random seed* test_that("predict function works correctly", { library(survival) withr::local_seed(1234) temp <- generate_cure_data(n = 100, j = 10, n_true = 10, a = 1.8) training <- temp$training testing <- temp$testing fit <- curegmifs(Surv(Time, Censor) ~ ., data = training, x_latency = training, model = "weibull", thresh = 1e-4, maxit = 2000, epsilon = 0.01, verbose = FALSE ) predict_train <- predict(fit) predict_train$p_uncured %>% expect_type("double") predict_train$linear_latency %>% expect_type("double") predict_train$latency_risk %>% expect_type("character") expect_setequal(names(predict_train), c("p_uncured", "linear_latency", "latency_risk")) expect_equal(round(predict_train$p_uncured[1], 7), 0.13618) expect_equal(round(predict_train$linear_latency[1], 6), 1.347184) expect_equal(predict_train$latency_risk[1], "high risk") predict_test <- predict(fit, newdata = testing) predict_test$p_uncured %>% expect_type("double") predict_test$linear_latency %>% expect_type("double") predict_test$latency_risk %>% expect_type("character") fit.cv <- cv_cureem(Surv(Time, Censor) ~ ., data = training, x_latency = training, fdr_control = FALSE, grid_tuning = FALSE, nlambda_inc = 10, nlambda_lat = 10, n_folds = 2, seed = 23, verbose = TRUE ) predict_train_cv <- predict(fit.cv) predict_train_cv$p_uncured %>% expect_type("double") predict_train_cv$linear_latency %>% expect_type("double") predict_train_cv$latency_risk %>% expect_type("character") fit.lm <- lm(Time ~ Censor, data = training) expect_error(predict.mixturecure(fit.lm), "Error: class of object must be mixturecure") })