# The tests in this script are slow and will be skipped on CRAN and CI # Create template ---- test_that("template creation works", { # this test is slow so skip on CRAN and CI skip_on_cran() skip_on_ci() # use docs from fixtures folder template_docs <- test_path("fixtures", "template", "data", "template_docs") # write to temporary directory main_dir <- file.path(tempdir(), 'main_dir') if (!dir.exists(main_dir)){dir.create(main_dir)} warnings <- capture_warnings(actual <- make_clustering_template(main_dir = main_dir, template_docs = template_docs, writer_indices = c(1, 5), K = 5, num_dist_cores = 1, max_iters = 3, centers_seed = 100)) expect_identical(actual, example_cluster_template) expect_match(warnings, "For case-work, the maximum number of iterations must be greater than or equal to 25. Fewer iterations are only intended for development testing.", all = FALSE) expect_match(warnings, "For case-work, the number of clusters K must be 40. Other numbers of clusters are only intended for development testing.", all = FALSE) }) # Fit model and analyze qd when writer IDs contain numbers and letters ---- test_that("fit model works when writer IDs contain numbers and letters", { # this test is slow so skip on CRAN and CI skip_on_cran() skip_on_ci() # use docs from examples folder model_docs <- test_path("fixtures", "template", "data", "model_docs") # write to temporary directory main_dir <- file.path(tempdir(), 'main_dir') if (!dir.exists(main_dir)){dir.create(main_dir)} if (!dir.exists(file.path(main_dir, "data"))){dir.create(file.path(main_dir, "data"))} # save example_template in temporary directory saveRDS(example_cluster_template, file.path(main_dir, "data", "template.rds")) actual <- fit_model(main_dir = main_dir, model_docs = model_docs, num_iters = 200, num_chains = 1, num_cores = 1, writer_indices = c(1, 5), doc_indices = c(7, 18)) # because it uses MCMC the model will not be exactly the same each time so we # cannot use expect_identical and compare the actual model to a fixture model # names expect_named(actual, c("fitted_model", "rjags_data", "graph_measurements", "cluster_fill_counts")) # check that model is an mcmc object expect_true(coda::is.mcmc(actual$fitted_model[[1]])) # check dimensions K <- actual$rjags_data$G W <- actual$rjags_data$W expect_length(actual$fitted_model, 1) expect_equal(dim(actual$fitted_model[[1]]), c(200, 2*K + 3*K*W)) # check variable names expect_equal(colnames(actual$fitted_model[[1]]), list_model_variables(num_writers = W, num_clusters = K)) }) test_that("analyze questioned document works when writer IDs contain numbers and letters", { # this test is slow so skip on CRAN and CI skip_on_cran() skip_on_ci() # use docs from examples folder questioned_docs <- test_path("fixtures", "template", "data", "questioned_docs") # write to temporary directory main_dir <- file.path(tempdir(), 'main_dir') if (!dir.exists(main_dir)){dir.create(main_dir)} if (!dir.exists(file.path(main_dir, "data"))){dir.create(file.path(main_dir, "data"))} actual <- analyze_questioned_documents(main_dir = main_dir, questioned_docs = questioned_docs, model = example_model, num_cores = 1, writer_indices = c(1, 5), doc_indices = c(7, 18)) expect_identical(actual, example_analysis) })