skip_on_cran() # tbl_summary(data) ------------------------------------------------------------ test_that("tbl_summary(data)", { # creates table when data frame is passed expect_snapshot(tbl_summary(data = trial) |> as.data.frame()) expect_snapshot(tbl_summary(data = mtcars) |> as.data.frame()) expect_snapshot(tbl_summary(data = iris) |> as.data.frame()) }) test_that("tbl_summary(data) errors properly", { # errors thrown when bad data argument passed expect_snapshot(error = TRUE, tbl_summary()) expect_snapshot(error = TRUE, tbl_summary(data = letters)) expect_snapshot(error = TRUE, tbl_summary(data = dplyr::tibble())) }) # tbl_summary(by) -------------------------------------------------------------- test_that("tbl_summary(by)", { expect_snapshot(tbl_summary(data = trial, by = trt) |> as.data.frame()) expect_snapshot(tbl_summary(data = mtcars, by = am) |> as.data.frame()) expect_snapshot(tbl_summary(data = iris, by = Species) |> as.data.frame()) }) test_that("tbl_summary(by) errors properly", { # errors thrown when bad data argument passed expect_snapshot(error = TRUE, tbl_summary(mtcars, by = c("mpg", "am"))) }) # tbl_summary(label) ----------------------------------------------------------- test_that("tbl_summary(label)", { expect_error( tbl <- tbl_summary( mtcars, by = am, label = list(mpg = "New mpg", cyl = "New cyl"), include = c(mpg, cyl) ), NA ) expect_snapshot(as.data.frame(tbl)) expect_equal( tbl$table_body |> dplyr::filter(row_type %in% "label") |> dplyr::pull(label), c("New mpg", "New cyl") ) }) test_that("tbl_summary(label) errors properly", { expect_snapshot( error = TRUE, tbl_summary(trial["age"], label = list(age = letters)) ) expect_snapshot( error = TRUE, tbl_summary(trial["age"], label = letters) ) }) # tbl_summary(statistic) ------------------------------------------------------- test_that("tbl_summary(statistic)", { # categorical summary expect_equal( trial |> tbl_summary( include = response, statistic = response ~ "n={n} | N={N} | p={p} | N_obs={N_obs} | N_miss={N_miss} | N_nonmiss={N_nonmiss} | p_miss={p_miss} | p_nonmiss={p_nonmiss}", missing = "no" ) |> as.data.frame(col_labels = FALSE) |> dplyr::pull(stat_0), "n=61 | N=193 | p=32 | N_obs=200 | N_miss=7 | N_nonmiss=193 | p_miss=3.5 | p_nonmiss=97" ) # continuous summary, testing cv function and passed in formula expect_equal( { cv <- function(x) sd(x, na.rm = TRUE) / mean(x, na.rm = TRUE) * 100 trial |> tbl_summary( include = age, statistic = age ~ "cv={cv} | N_obs={N_obs} | N_miss={N_miss} | N_nonmiss={N_nonmiss} | p_miss={p_miss} | p_nonmiss={p_nonmiss}", missing = "no" ) |> as.data.frame(col_labels = FALSE) |> dplyr::pull(stat_0) }, "cv=30 | N_obs=200 | N_miss=11 | N_nonmiss=189 | p_miss=5.5 | p_nonmiss=95" ) # continuous summary, testing cv function and passed in named list expect_equal( { cv <- function(x) sd(x, na.rm = TRUE) / mean(x, na.rm = TRUE) * 100 trial |> tbl_summary( include = age, statistic = list(age = "cv={cv} | N_obs={N_obs} | N_miss={N_miss} | N_nonmiss={N_nonmiss} | p_miss={p_miss} | p_nonmiss={p_nonmiss}"), missing = "no" ) |> as.data.frame(col_labels = FALSE) |> dplyr::pull(stat_0) }, "cv=30 | N_obs=200 | N_miss=11 | N_nonmiss=189 | p_miss=5.5 | p_nonmiss=95" ) }) test_that("tbl_summary(statistic) errors properly", { expect_snapshot( error = TRUE, tbl_summary( trial, include = response, statistic = ~"{n} ({not_a_statistic})" ) ) expect_snapshot( error = TRUE, tbl_summary( trial, include = age, statistic = ~"({not_a_summary_statistic})" ) ) }) test_that("tbl_summary(statistic,type) errors", { # we get a nice message for a continuous variable with stat as a character vector expect_snapshot( error = TRUE, tbl_summary( trial, include = age, statistic = ~c("{mean}", "{sd}") ) ) expect_snapshot( error = TRUE, tbl_summary( trial, include = grade, statistic = ~c("{mean}", "{sd}") ) ) }) # tbl_summary(digit) ----------------------------------------------------------- test_that("tbl_summary(digit)", { expect_error( tbl <- tbl_summary( trial, include = c(age, response, marker, ttdeath), digits = list( # using named list to change 2 of the 3 statistics age = list(median = 4, p25 = \(x) style_number(x, digits = 2)), # using a vector of integers response = c(0, 3), # using a single integer that will apply to all stats marker = 0, # passing a single function that will apply to all stats ttdeath = list(\(x) style_number(x, digits = 2)) ), missing = "no" ) |> modify_column_unhide(variable) |> as.data.frame(col_labels = FALSE), NA ) # check the correct stats expect_equal( tbl |> dplyr::filter(variable == "age") |> dplyr::pull(stat_0), "47.0000 (38.00, 57)" ) expect_equal( tbl |> dplyr::filter(variable == "response") |> dplyr::pull(stat_0), "61 (31.606%)" ) expect_equal( tbl |> dplyr::filter(variable == "marker") |> dplyr::pull(stat_0), "1 (0, 1)" ) expect_equal( tbl |> dplyr::filter(variable == "ttdeath") |> dplyr::pull(stat_0), "22.41 (15.92, 24.00)" ) }) test_that("tbl_summary(digit) errors properly", { expect_error( tbl_summary( trial, include = age, digits = list( age = list( median = letters, # this is not a function! p25 = \(x) style_number(x, digits = 2) ) ), missing = "no" ), "*" ) }) # tbl_summary(type) ------------------------------------------------------------ test_that("tbl_summary(type)", { expect_snapshot( tbl_summary( trial, include = c(age, marker, response, stage), type = list(age = "continuous", marker = "continuous2", response = "dichotomous", state = "categorical"), missing = "no" ) |> getElement("table_body") |> dplyr::select(variable, var_type, row_type, label) ) # can use the default type to select variables to change the summary type expect_equal( tbl_summary( trial, type = list(all_continuous() ~ "continuous2", all_dichotomous() ~ "continuous"), include = c(age, marker, response), missing = "no" ) |> getElement("inputs") |> getElement("type"), list(age = "continuous2", marker = "continuous2", response = "continuous") ) # yes/no variables default to dichotomous expect_equal( data.frame(yn = c("no", "yes", "yes")) |> tbl_summary() |> getElement("inputs") |> getElement("value") |> getElement("yn"), "yes" ) expect_equal( data.frame( yn = c("no", "yes", "yes") |> factor() ) |> tbl_summary() |> getElement("inputs") |> getElement("value") |> getElement("yn"), "yes" ) expect_equal( data.frame( yn = c("no", "yes", "yes") |> factor(levels = c("yes", "no")) ) |> tbl_summary() |> getElement("inputs") |> getElement("value") |> getElement("yn"), "yes" ) expect_equal( data.frame( yn = c("no", "no", "no") |> factor(levels = c("no", "yes")) ) |> tbl_summary() |> getElement("inputs") |> getElement("value") |> getElement("yn"), "yes" ) # a yes or no only character defaults to categorical expect_equal( data.frame(yn = c("yes", "yes")) |> tbl_summary() |> getElement("inputs") |> getElement("type") |> getElement("yn"), "categorical" ) expect_equal( data.frame(yn = c("no", "no")) |> tbl_summary() |> getElement("inputs") |> getElement("type") |> getElement("yn"), "categorical" ) expect_equal( data.frame(yn = c("nO", "yEs", "yEs")) |> tbl_summary() |> getElement("inputs") |> getElement("value") |> getElement("yn"), "yEs" ) # a zero or one only numeric defaults to categorical expect_equal( data.frame(yn = c(0, 0)) |> tbl_summary() |> getElement("inputs") |> getElement("type") |> getElement("yn"), "categorical" ) expect_equal( data.frame(yn = c(1, 1)) |> tbl_summary() |> getElement("inputs") |> getElement("type") |> getElement("yn"), "categorical" ) }) test_that("tbl_summary(type) proper errors/messages", { # grade cannot be summarized continuously, and we'll see reports in the console expect_snapshot( tbl <- tbl_summary( trial, include = grade, type = grade ~ "continuous" ) ) expect_equal(tbl$table_body$stat_0, "NA (NA, NA)") # unobserved levels cannot be summarized for a dichotomous summary expect_snapshot( error = TRUE, tbl_summary( trial, include = grade, type = grade ~ "dichotomous", value = grade ~ "IV" ) ) # error when no clear dichotomous value present expect_snapshot( error = TRUE, tbl_summary( trial, include = grade, type = grade ~ "dichotomous" ) ) }) # tbl_summary(value) ----------------------------------------------------------- test_that("tbl_summary(value)", { # ensure grade is coerced to dichotomous and response defaults to dichotomous expect_error( tbl <- tbl_summary(trial, value = "grade" ~ "III", include = c(grade, response)), NA ) expect_snapshot(as.data.frame(tbl)) # check all summary types are assigned to dichotomous expect_equal( tbl$table_body$var_type |> unique(), "dichotomous" ) # check we can pass unobserved levels to values expect_equal( trial |> dplyr::mutate( grade = factor(grade, levels = c("I", "II", "III", "IV")), response = TRUE ) |> tbl_summary( include = c(grade, response), value = list(grade = "IV", response = FALSE) ) |> as.data.frame(col_labels = FALSE) |> dplyr::pull(stat_0) |> unique(), "0 (0%)" ) }) test_that("tbl_summary(value) errors properly", { # passing a value that does not exist expect_snapshot( error = TRUE, tbl_summary(trial, value = "grade" ~ "IV", include = c(grade, response)) ) }) # tbl_summary(missing) --------------------------------------------------------- test_that("tbl_summary(missing)", { # default is correctly "ifany" expect_equal( tbl_summary( trial, include = c(trt, age) ) |> as.data.frame(), tbl <- tbl_summary( trial, include = c(trt, age), missing = "ifany" ) |> as.data.frame() ) # age includes an Unknown row, and trt does not expect_equal(tbl[, 1], c("Chemotherapy Treatment", "Drug A", "Drug B", "Age", "Unknown")) # all vars have a missing row when requested expect_equal( tbl_summary( trial, include = c(trt, age), missing = "always" ) |> getElement("table_body") |> dplyr::filter(row_type %in% "missing") |> nrow(), 2L ) # None of the vars have a missing row when requested expect_equal( tbl_summary( trial, include = c(trt, age), missing = "no" ) |> getElement("table_body") |> dplyr::filter(row_type %in% "missing") |> nrow(), 0L ) expect_snapshot( error = TRUE, tbl_summary( trial, missing = "NOT AN OPTION" ) ) }) # tbl_summary(missing_text) ---------------------------------------------------- test_that("tbl_summary(missing_text)", { expect_snapshot( tbl_summary( trial, include = response, missing_text = "(MISSING)" ) |> as.data.frame(col_label = FALSE) ) # errors with invalid inputs expect_snapshot( error = TRUE, tbl_summary( trial, include = response, missing_text = letters ) ) expect_snapshot( error = TRUE, tbl_summary( trial, include = response, missing_text = 10L ) ) }) # tbl_summary(missing_stat) ---------------------------------------------------- test_that("tbl_summary(missing_stat)", { # basic reporting works expect_equal( tbl_summary( trial, include = response, missing_stat = "N = {N_miss}" ) |> as.data.frame(col_labels = FALSE) |> dplyr::pull(stat_0) |> dplyr::last(), "N = 7" ) # reporting of non-standard stats works as well expect_equal( tbl_summary( trial, include = response, missing_stat = "{N_miss}, {N_obs}, {N_nonmiss}, {p_miss}, {p_nonmiss}" ) |> as.data.frame(col_labels = FALSE) |> dplyr::pull(stat_0) |> dplyr::last(), "7, 200, 193, 3.5, 97" ) # errors with bad inputs expect_snapshot( error = TRUE, tbl_summary(trial, include = response, missing_stat = letters) ) expect_snapshot( error = TRUE, tbl_summary(trial, include = response, missing_stat = 10L) ) }) # tbl_summary(sort) ------------------------------------------------------------ test_that("tbl_summary(sort)", { expect_equal( tbl_summary(mtcars, sort = all_categorical() ~ "frequency", include = cyl) |> getElement("table_body") |> dplyr::filter(row_type %in% "level") |> dplyr::pull(label), c("8", "4", "6") ) }) test_that("tbl_summary(sort) errors properly", { # proper errors are returned expect_snapshot( error = TRUE, tbl_summary(mtcars, sort = list(all_categorical() ~ c("frequency", "two"))) ) expect_snapshot( error = TRUE, tbl_summary(mtcars, sort = list(all_categorical() ~ "freq5555uency")) ) }) # tbl_summary(percent) --------------------------------------------------------- test_that("tbl_summary(percent)", { expect_snapshot( tbl_summary(trial, by = trt, include = grade, percent = "column", statistic = ~"{p}%") |> as.data.frame(col_labels = FALSE) ) expect_snapshot( tbl_summary(trial, by = trt, include = grade, percent = "row", statistic = ~"{p}%") |> as.data.frame(col_labels = FALSE) ) expect_snapshot( tbl_summary(trial, by = trt, include = grade, percent = "cell", statistic = ~"{p}%") |> as.data.frame(col_labels = FALSE) ) # errors with bad input expect_snapshot( error = TRUE, tbl_summary(trial, by = trt, include = grade, percent = letters, statistic = ~"{p}%") ) })