options(digits=6) # illustrates the use of merge, for merging parameters accross variables: # Z1=m+e1(s) # Z2=m+e2(s) # Z1 and Z2 each have a different variogram, but share the parameter m # see documentation of gstat() function library(gstat) d1 = data.frame(x=c(0,2),y=c(0,0),z=c(0,1)) d2 = data.frame(x=c(0,2),y=c(2,2),z=c(4,5)) g = gstat(NULL,"d1", z~1,~x+y,d1,model=vgm(1, "Exp", 1)) g = gstat(g,"d2", z~1,~x+y,d2,model=vgm(1, "Exp", 1), merge=c("d1","d2")) g = gstat(g, c("d1", "d2"), model = vgm(0.5, "Exp", 1)) predict(g, data.frame(x=1,y=1), debug = 32) # Z1 and Z2 share a regression slope: g = gstat(NULL,"d1", z~x,~x+y,d1,model=vgm(1, "Exp", 1)) g = gstat(g,"d2", z~x,~x+y,d2,model=vgm(1, "Exp", 1), merge=list(c("d1",2,"d2",2))) g = gstat(g, c("d1", "d2"), model = vgm(0.5, "Exp", 1)) predict(g, data.frame(x=1,y=1), debug = 32)