# Project: gspcr # Objective: Test cp_LRT function # Author: Edoardo Costantini # Created: 2023-04-18 # Modified: 2023-04-18 # Notes: # Define tolerance for differences tol <- 1e-5 # Test: output class ----------------------------------------------------------- # Fit a nested model nested <- glm(mpg ~ cyl + disp, data = mtcars) # Fit a complex model complex <- glm(mpg ~ cyl + disp + hp + am, data = mtcars) # Compute log-likelihood statistic with your function LRT_M <- cp_LRT( ll_restricted = logLik(nested), ll_full = logLik(complex) ) # Atomic numeric vector testthat::expect_true(is.numeric(LRT_M)) # Length 1 testthat::expect_true(length(LRT_M) == 1) # Test: manual computation = lmtest::lrtest output ----------------------------- # Likelihood ratio test LRT_test <- lmtest::lrtest(nested, complex) # Extract the LRT value LRT_R <- LRT_test$Chisq[2] # R equal to manual testthat::expect_true(LRT_R - LRT_M < tol)