# Project: gspcr # Objective: Test cp_AIC function # Author: Edoardo Costantini # Created: 2023-04-18 # Modified: 2023-04-18 # Notes: # Define tolerance for differences tol <- 1e-5 # Test: output class ----------------------------------------------------------- # Fit some model lm_out <- lm(mpg ~ cyl + disp, data = mtcars) # Compute AIC with your function AIC_M <- cp_AIC( ll = logLik(lm_out), k = length(coef(lm_out)) + 1 # intercept + reg coefs + error variance ) # Atomic numeric vector testthat::expect_true(is.numeric(AIC_M)) # Length 1 testthat::expect_true(length(AIC_M) == 1) # Test: manual computation = stats::AIC output --------------------------------- # Compute AIC with R function AIC_R <- stats::AIC(lm_out) # R equal to manual testthat::expect_true(AIC_R - AIC_M < tol)