################################################# # Test plotgsZ function ################################################# ## For comparing floating-point numbers, an exact match cannot be expected. ## For such test cases,the tolerance is set to 1e-6 (= 0.000001), a sufficiently ## low value. x <- gsDesign(k = 5, test.type = 2, n.fix = 800) pltobj <- plotgsZ(x) test_that( desc = "check the sample size", code = { nplot <- subset(pltobj$data, Bound == "Upper")$N expect_equal(object = nplot, expected = x$n.I) expect_lte(abs(nplot[1] - x$n.I[1]), 1e-6) expect_lte(abs(nplot[2] - x$n.I[2]), 1e-6) expect_lte(abs(nplot[3] - x$n.I[3]), 1e-6) expect_lte(abs(nplot[4] - x$n.I[4]), 1e-6) expect_lte(abs(nplot[5] - x$n.I[5]), 1e-6) } ) zlow <- subset(pltobj$data, Bound == "Lower")$Z expectedlowb <- x$lower$bound test_that( desc = "check Z values for lower boundary", code = { expect_lte(abs(zlow[1] - expectedlowb[1]), 1e-6) expect_lte(abs(zlow[2] - expectedlowb[2]), 1e-6) expect_lte(abs(zlow[3] - expectedlowb[3]), 1e-6) expect_lte(abs(zlow[4] - expectedlowb[4]), 1e-6) expect_lte(abs(zlow[5] - expectedlowb[5]), 1e-6) } ) zup <- subset(pltobj$data, Bound == "Upper")$Z expectedupb <- x$upper$bound test_that( desc = "check Z value for upper boundary", code = { expect_lte(abs(zup[1] - expectedupb[1]), 1e-6) expect_lte(abs(zup[2] - expectedupb[2]), 1e-6) expect_lte(abs(zup[3] - expectedupb[3]), 1e-6) expect_lte(abs(zup[4] - expectedupb[4]), 1e-6) expect_lte(abs(zup[5] - expectedupb[5]), 1e-6) } ) test_that("Test plotgsZ graphs are correctly rendered ", { save_plot_obj <- save_gg_plot(plotgsZ(x)) local_edition(3) expect_snapshot_file(save_plot_obj, "plot_plotgsz_1.png") })