################################################# # Test plotRR function ################################################# ## For comparing floating-point numbers, an exact match cannot be expected. ## For such test cases,the tolerance is set to 1e-6 (= 0.000001), a sufficiently ## low value. x <- gsDesign() pltobj <- plotRR(x) test_that( desc = "check the sample size", code = { nplot <- subset(pltobj$data, Bound == "Upper")$N expect_lte(abs(nplot[1] - x$n.I[1]), 1e-6) expect_lte(abs(nplot[2] - x$n.I[2]), 1e-6) expect_lte(abs(nplot[3] - x$n.I[3]), 1e-6) } ) rlow <- subset(pltobj$data, Bound == "Lower")$Z expectedlow <- exp(gsDelta(z = x$lower$bound, i = 1:x$k, x)) test_that( desc = "check relative risk (RR) value for lower boundary", code = { expect_lte(abs(rlow[1] - expectedlow[1]), 1e-6) expect_lte(abs(rlow[2] - expectedlow[2]), 1e-6) expect_lte(abs(rlow[3] - expectedlow[3]), 1e-6) } ) rup <- subset(pltobj$data, Bound == "Upper")$Z expectedup <- exp(gsDelta(z = x$upper$bound, i = 1:x$k, x)) test_that( desc = "check relative risk (RR) value for Upper boundary", code = { expect_lte(abs(rup[1] - expectedup[1]), 1e-6) expect_lte(abs(rup[2] - expectedup[2]), 1e-6) expect_lte(abs(rup[3] - expectedup[3]), 1e-6) } ) test_that("Test plotRR graphs are correctly rendered ", { save_plot_obj <- save_gg_plot(plotRR(x)) local_edition(3) expect_snapshot_file(save_plot_obj, "plot_plotRR_1.png") })