#----------------------------------- # Test binomialSPRT function #----------------------------------- ## For comparing floating-point numbers, an exact match cannot be expected. ## For such test cases,the tolerance is set to 1e-6 (= 0.000001), a sufficiently ## low value. validate_vd <- Validate_comp_sprt_bnd( alpha = 0.1, beta = 0.15, p0 = 0.05, p1 = 0.25, nmin = 10, nmax = 35 ) exct_des <- gsBinomialExact( k = nrow(validate_vd$bounds), theta <- c(0.05, 0.25), n.I = validate_vd$bounds$n, a = validate_vd$bounds$lbrnd, b = validate_vd$bounds$ubrnd ) testthat::test_that(desc = "Test binomialSPRT function source : independent R Program-helper.R", code = { binSPRT <- binomialSPRT( p0 = 0.05, p1 = 0.25, alpha = 0.1, beta = 0.15, minn = 10, maxn = 35 ) testthat::expect_equal( object = binSPRT$k, expected = exct_des$k, info = "Validate value of K - Number of planned analysis" ) testthat::expect_true( object = all(binSPRT$n.I == exct_des$n.I), info = "Validate value of n.I - Sample Size" ) testthat::expect_true( object = all(binSPRT$lower$bound == exct_des$lower$bound), info = "Validate value of binomialSPRT lower bound" ) testthat::expect_true( object = all(binSPRT$upper$bound == exct_des$upper$bound), info = "Validate value of binomialSPRT upper bound " ) testthat::expect_lte( object = (abs(binSPRT$slope - validate_vd$slope)), expected = 1e-6 ) # Test for y-intercept of lower boundary testthat::expect_lte( object = (abs(binSPRT$intercept[1] - validate_vd$upint)), expected = 1e-6 ) # Test for y-intercept of upper boundary testthat::expect_lte( object = (abs(binSPRT$intercept[2] - validate_vd$lowint)), expected = 1e-6 ) # Test for expected sample size under H0 : p0 = 0.05 testthat::expect_lte( object = abs(binSPRT$en[1] - exct_des$en[1]), expected = 1e-6 ) # Test for expected sample size under H1 : p1 = 0.25 testthat::expect_lte( object = abs(binSPRT$en[2] - exct_des$en[2]), expected = 1e-6 ) # Validate lower probability for analysis 15 under H0 : p0 = 0.05 testthat::expect_lte( object = abs(binSPRT$lower$prob[15, 1] - exct_des$lower$prob[15, 1]), expected = 1e-6 ) # Validate lower probability for analysis 15 under H1 : p1 = 0.25 testthat::expect_lte( object = abs(binSPRT$lower$prob[15, 2] - exct_des$lower$prob[15, 2]), expected = 1e-6 ) # Validate lower probability for analysis 23 under H0 : p0 = 0.05 actual_output <- c(binSPRT$lower$prob[23, 1], binSPRT$lower$prob[23, 2]) testthat::expect_lte( object = abs(actual_output[1] - exct_des$lower$prob[23, 1]), expected = 1e-6 ) # Validate lower probability for analysis 23 under H1 : p1 = 0.25 testthat::expect_lte( object = abs(actual_output[2] - exct_des$lower$prob[23, 2]), expected = 1e-6 ) # Validate upper probability for analysis 15 under H0 : p0 = 0.05 actual_output <- c(binSPRT$upper$prob[15, 1], binSPRT$upper$prob[15, 2]) testthat::expect_lte( object = abs(actual_output[1] - exct_des$upper$prob[15, 1]), expected = 1e-6 ) # Validate upper probability for analysis 15 under H1 : p1 = 0.25 testthat::expect_lte( object = abs(actual_output[2] - exct_des$upper$prob[15, 2]), expected = 1e-6 ) # Validate upper probability for analysis 23 under H0 : p0 = 0.05 actual_output <- c(binSPRT$upper$prob[23, 1], binSPRT$upper$prob[23, 2]) testthat::expect_lte( object = abs(actual_output[1] - exct_des$upper$prob[23, 1]), expected = 1e-6 ) # Validate upper probability for analysis 23 under H1 : p1 = 0.25 testthat::expect_lte( object = abs(actual_output[2] - exct_des$upper$prob[23, 2]), expected = 1e-6 ) })