# This file was formerly stored as `tests/gsDesign_independent_code.R` and is # now moved to `tests/testthat/helper.R` to follow testthat best practices. # This script contains independently programmed functions for validating some of # the functions of the gsDesign package. #------------------------------------------------------------------------------- # gsPP : averages conditional power across a posterior distribution to compute # predictive power. #------------------------------------------------------------------------------- # validation code Author : Apurva Bhingare # x: design object size. # i: look position # zi: interim test statistic at ith look # theta: a vector with theta value(s) at which conditional power is to be computed # wgts: Weights to be used with grid points in theta. # r: Integer value controlling grid for numerical integration # total: The default of total=TRUE produces the combined probability for all # planned analyses after the interim analysis specified in i #------------------------------------------------------------------------------- validate_gsPP <- function(x, i, zi, theta, wgts, r, total = total) { k0 <- x$k - i I0 <- x$n.I[(i + 1):x$k] - x$n.I[i] if (x$test.type == 1) { a0 <- rep(-3, k0) } else { a0 <- (x$lower$bound[(i + 1):x$k] - zi * sqrt(x$n.I[i] / x$n.I[(i + 1):x$k])) / sqrt(I0 / x$n.I[(i + 1):x$k]) } b0 <- (x$upper$bound[(i + 1):x$k] - zi * sqrt(x$n.I[i] / x$n.I[(i + 1):x$k])) / sqrt(I0 / x$n.I[(i + 1):x$k]) cp <- gsProbability(k = k0, theta = theta, n.I = I0, a = a0, b = b0, r = r, overrun = 0) gsDen <- dnorm(zi, mean = sqrt(x$n.I[i]) * theta) * wgts pp <- cp$upper$prob %*% gsDen / sum(gsDen) if (total == TRUE) { total.pp <- sum(pp) return(total.pp) } else { total.pp <- pp return(total.pp) } } #------------------------------------------------------------------------------- ## gsZ: its computes density for interim test statistic value. #------------------------------------------------------------------------------- # x: design object.size. # theta: a vector with theta value(s) at which conditional power is to be computed # i: look position. # zi: interim test statistic at ith look #------------------------------------------------------------------------------- validate_gsZ <- function(x, theta, i, zi) { nIi <- x$n.I[i] mu <- theta * sqrt(nIi) fz <- matrix(0, nrow = length(zi), ncol = length(mu)) for (nc in 1:length(mu)) { for (nr in 1:length(zi)) { fz[nr, nc] <- dnorm(zi[nr], mu[nc]) } } return(fz) } #------------------------------------------------------------------------------- # gsPI: computes Bayesian prediction intervals for future analyses corresponding # to results produced by gsPP() #------------------------------------------------------------------------------- # x: design object size. # i: look position # j: specific analysis for which prediction is being made; must be >i and no more than x$k # zi: interim test statistic at ith look #------------------------------------------------------------------------------- validate_gsPI <- function(x, i, j, k, zi, alpha, mu, sigma1sq) { n <- x$n.I ti <- x$timing postmean <- (mu / sigma1sq + zi[i] * sqrt(n[i])) / (1 / sigma1sq + n[i]) postvar <- 1 / (1 / sigma1sq + n[i]) b <- zi[i] * sqrt(ti[i]) pimean <- b + postmean * (ti[j] - ti[i]) * sqrt(x$n.I[k]) pivar <- (postvar * (x$n.I[j] - x$n.I[i]) + 1) * (ti[j] - ti[i]) bpi <- pimean + qnorm(c(alpha / 2, 1 - (alpha / 2))) * sqrt(pivar) zpi <- bpi / sqrt(ti[j]) return(zpi) } #------------------------------------------------------------------------------- # gsBoundCP: (function description) #------------------------------------------------------------------------------- # x: design object size. #------------------------------------------------------------------------------- validate_gsBoundCP <- function(x) { i0 <- x$k - 1 theta <- x$delta thetahat_hi <- thetahat_hi <- rep(0, i0) CP_lo <- CP_hi <- rep(0, i0) if (x$test.type == 1) { thetahat_hi <- thetahat_low <- if (theta != "thetahat") { rep(theta, i0) } else { x$upper$bound[1:i0] / sqrt(x$n.I[1:i0]) } } else { thetahat_hi <- if (theta != "thetahat") { rep(theta, i0) } else { x$upper$bound[1:i0] / sqrt(x$n.I[1:i0]) } thetahat_low <- if (theta != "thetahat") { rep(theta, i0) } else { x$lower$bound[1:i0] / sqrt(x$n.I[1:i0]) } } for (i in 1:i0) { if (x$test.type > 1) { xhi <- gsCP(x, thetahat_hi[i], i, x$upper$bound[i]) CP_hi[i] <- sum(xhi$upper$prob) xlo <- gsCP(x, thetahat_low[i], i, x$lower$bound[i]) CP_lo[i] <- sum(xhi$lower$prob) Bounds <- data.frame(CP_lo, CP_hi) } else { xhi <- gsCP(x, thetahat_hi[i], i, x$upper$bound[i]) CP_hi[i] <- sum(xhi$upper$prob) Bounds <- CP_hi } } return(Bounds) } #------------------------------------------------------------------------------- # gsCPOS: gsCPOS() assumes no boundary has been crossed before and including an # interim analysis of interest, and computes the probability of success based on this event #------------------------------------------------------------------------------- # x: design object size. # theta: a vector with theta value(s) at which conditional power is to be computed # wgts: Weights to be used with grid points in theta # i0: look position #------------------------------------------------------------------------------- validate_gsCPOS <- function(x, theta, wgts, i0 = i) { one <- rep(0, x$k) one[1:i0] <- rep(1, i0) zero <- 1 - one y <- gsProbability(theta = theta, d = x) pAi <- 1 - one %*% (y$upper$prob + y$lower$prob) %*% wgts pABi <- zero %*% (y$upper$prob) %*% wgts CPOS <- pABi / pAi return(CPOS) } #------------------------------------------------------------------------------- # gsPosterior: gsPosterior() computes the posterior density for the group sequential # design parameter of interest given a prior density and an interim # outcome that is exact or in an interval #------------------------------------------------------------------------------- # x: design object size. # theta: a vector with theta value(s) at which conditional power is to be computed; # i: look position # zi: interim test statistic at ith look #------------------------------------------------------------------------------- validate_gsPosterior <- function(x, theta, density, gridwgts, wgts, i, zi) { if (!is.null(gridwgts)) { nIi <- x$n.I[i] mu <- theta * sqrt(nIi) fz <- matrix(0, nrow = length(zi), ncol = length(mu)) for (nc in 1:length(mu)) { for (nr in 1:length(zi)) { fz[nr, nc] <- dnorm(zi[nr], mu[nc]) } } p <- (fz * density) marg <- sum(fz * density * gridwgts) posterior <- p / marg } else { gridwgts <- rep(1, length(theta)) nIi <- x$n.I[i] ## ss at the ith look mu <- theta * sqrt(nIi) ## theta is standardized delta fz <- matrix(0, nrow = length(zi), ncol = length(mu)) for (nc in 1:length(mu)) { for (nr in 1:length(zi)) { fz[nr, nc] <- dnorm(zi[nr], mu[nc]) } } p <- (fz * density * gridwgts) marg <- sum(fz * density * gridwgts) posterior <- p / marg } return(posterior) } #------------------------------------------------------------------------------- # sfPoints: The function sfPoints implements a spending function with values # specified for an arbitrary set of specified points. #------------------------------------------------------------------------------- # Independent code Author : Apurva Bhingare # alpha: Type I error (or Type II error) specification takes values between 0 and 1. # t : A vector of time points (information fraction) with increasing # values from >0 and <=1. # param: A real vector of the same length as t specifying the cumulative proportion (between 0 and 1) # of spending to corresponding to each point in t #------------------------------------------------------------------------------- validate_sfPoints <- function(alpha, t, param) { t[t > 1] <- 1 k <- length(t) j <- length(param) if (j == k - 1) { param <- c(param, 1) j <- k } spend <- alpha * param return(spend) } #------------------------------------------------------------------------------- #### sfLinear : The function sfLinear() allows specification of a piecewise # linear spending function. #------------------------------------------------------------------------------- # Independent code Author : Apurva Bhingare # alpha: Type I error (or Type II error) specification takes values between 0 and 1. # t : A vector of points with increasing values from 0 to 1, inclusive. # param: A vector with a positive, even length. Values must range from 0 to 1, inclusive. #------------------------------------------------------------------------------- validate_sfLinear <- function(alpha, t, param) { j <- length(param) k <- j / 2 s <- t s[t <= 0] <- 0 s[t >= 1] <- 1 index <- (0 < t) & (t <= param[1]) s[index] <- param[k + 1] * t[index] / param[1] index <- (1 > t) & (t >= param[k]) s[index] <- param[j] + (t[index] - param[k]) / (1 - param[k]) * (1 - param[j]) if (k > 1) { for (i in 2:k) { index <- (param[i - 1] < t) & (t <= param[i]) s[index] <- param[k + i - 1] + (t[index] - param[i - 1]) / (param[i] - param[i - 1]) * (param[k + i] - param[k + i - 1]) } } spend <- alpha * s return(spend) } #------------------------------------------------------------------------------- #### sfStep : The function sfStep() specifies a step function spending function #------------------------------------------------------------------------------- # Independent code Author : Apurva Bhingare (modified by K Anderson, 5/26/2022) # alpha: Type I error (or Type II error) specification takes values between 0 and 1. # t : A vector of time points (information fraction) with increasing # values from >0 and <=1. # param: A vector with a positive, even length. Values must range from 0 to 1, inclusive. #------------------------------------------------------------------------------- validate_sfStep <- function(alpha, t, param) { j <- length(param) k <- j / 2 s <- t s[t < param[1]] <- 0 s[t >= param[k]] <- param[j] if (k > 1){ for (i in 1:(k-1)) s[(param[i] <= t) & (t < param[i + 1])] <- param[k + i] } s[t >= 1] <- 1 spend <- alpha * s return(spend) } #-------------------------------------------------------------------------------- ## sfTDist : The function sfTDist() provides perhaps the maximum flexibility # among spending functions provided in the gsDesign package. #------------------------------------------------------------------------------- # Independent code Author : Apurva Bhingare # alpha: Type I error (or Type II error) specification takes values between 0 and 1. # t : A vector of time points (information fraction) with increasing # values from >0 and <=1. # param: A parameter vector of length 3 (5) for specifying t-ditribution, where third (fifth) # parameter gives the df #------------------------------------------------------------------------------- # Test sfTDist for param of length 3. validate_sfTDist <- function(alpha, t, param) { if (length(param) == 3) { t[t > 1] <- 1 a <- param[1] b <- param[2] df <- param[3] x <- qt(t, df) y <- pt(a + b * x, df) spend <- alpha * y } else { if (length(param) == 5) { t[t > 1] <- 1 t0 <- param[1:2] p0 <- param[3:4] df <- param[5] x <- qt(t0, df) y <- qt(p0, df) b <- (y[2] - y[1]) / (x[2] - x[1]) a <- y[2] - b * x[2] x <- qt(t, df) y <- pt(a + b * x, df) spend <- alpha * y } else { stop("Check parameter specification") } } return(spend) } #------------------------------------------------------------------------------- ## sfTruncated : The functions sfTruncated() and sfTrimmed apply any other # spending function over a restricted range. This allows eliminating spending for # early interim analyses when you desire not to stop for the bound being specified; #------------------------------------------------------------------------------- # Independent code Author : Apurva Bhingare # alpha: Type I error (or Type II error) specification takes values between 0 and 1. # tx : A vector of time points (information fraction) with increasing # values from >0 and <=1. # param: a list containing the elements sf (a spendfn object such as sfHSD), #------------------------------------------------------------------------------- validate_sfTruncated <- function(alpha, tx, param.list) { trange <- param.list$trange param <- param.list$param sf <- param.list$sf spend <- as.vector(rep(0, length(tx))) spend[tx >= trange[2]] <- alpha indx <- trange[1] < tx & tx < trange[2] ttmp <- (tx[indx] - trange[1]) / (trange[2] - trange[1]) if (max(indx)) { stmp1 <- sf(alpha = alpha, t = ttmp, param) spend[indx] <- stmp1$spend } spend.truncated <- spend return(spend.truncated) } #------------------------------------------------------------------------------- # sfTrimmed : sfTrimmed simply computes the value of the input spending function # and parameters in the sub-range of [0,1] #------------------------------------------------------------------------------- # Independent code Author : Apurva Bhingare # alpha: Type I error (or Type II error) specification takes values between 0 and 1. # tx : A vector of time points (information fraction) with increasing # values from >0 and <=1. # param: a list containing the elements sf (a spendfn object such as sfHSD), #------------------------------------------------------------------------------- validate_sfTrimmed <- function(alpha, tx, param.list) { trange <- param.list$trange param <- param.list$param sf <- param.list$sf spend <- as.vector(rep(0, length(tx))) spend[tx >= trange[2]] <- alpha indx <- trange[1] < tx & tx < trange[2] if (max(indx)) { stmp2 <- sf(alpha = alpha, t = tx[indx], param) spend[indx] <- stmp2$spend } spend.trimmed <- spend return(spend.trimmed) } #------------------------------------------------------------------------------- ## sfGapped : sfGapped() allows elimination of analyses after some time point in the trial #------------------------------------------------------------------------------- # Independent code Author : Apurva Bhingare # alpha: Type I error (or Type II error) specification takes values between 0 and 1. # tx : A vector of time points (information fraction) with increasing # values from >0 and <=1. # param: a list containing the elements sf (a spendfn object such as sfHSD), #------------------------------------------------------------------------------- validate_sfGapped <- function(alpha, tx, param.list) { trange <- param.list$trange param <- param.list$param sf <- param.list$sf spend <- as.vector(rep(0, length(tx))) spend[tx >= trange[2]] <- alpha indx <- trange[1] > tx if (max(indx)) { s <- sf(alpha = alpha, t = tx[indx], param) spend[indx] <- s$spend } indx <- (trange[1] <= tx & trange[2] > tx) if (max(indx)) { spend[indx] <- sf(alpha = alpha, t = trange[1], param)$spend } spend.gapped <- spend return(spend.gapped) } #------------------------------------------------------------------------------- ## spendingFunction: spendingFunction functions in general produce an object of type spendfn. #------------------------------------------------------------------------------- # alpha: Type I error (or Type II error) specification takes values between 0 and 1. # tx : A vector of time points (information fraction) with increasing # values from >0 and <=1. # param: A single real value or a vector of real values specifying the spending function parameter(s). #------------------------------------------------------------------------------- validate_spendingFunction <- function(alpha, tx, param) { spend <- alpha * tx return(spend) } #------------------------------------------------------------------------------- ############ #sfLogistic ############ # Independent code Author : Apurva Bhingare # alpha: Type I error (or Type II error) specification takes values between 0 and 1. # t : A vector of time points (information fraction) with increasing # values from >0 and <=1. # param: A vector with a positive, even length. Values must range from 0 to 1, inclusive. #------------------------------------------------------------------------------- validate_sfLogistic <- function(alpha, t, param) { if (length(param) == 2 ) { a<-param[1] b<-param[2] xv<-qlogis(t) sp<-alpha*plogis(a+b*xv) } else { if (length(param) == 4){ t0<-param[1:2] p0<-param[3:4] xv<-qlogis(t0) y<-qlogis(p0) b<-(y[2]-y[1])/(xv[2]-xv[1]) a<-y[2]-b*xv[2] xv<-qlogis(t) sp<-alpha*plogis(a+b*xv) } else { stop("Check parameter specification") } } return(sp) } #------------------------------------------------------------------------------- ########### #sfCauchy ########### # Independent code Author : Apurva Bhingare # alpha: Type I error (or Type II error) specification takes values between 0 and 1. # t : A vector of time points (information fraction) with increasing # values from >0 and <=1. # param: A vector with a positive, even length. Values must range from 0 to 1, inclusive. #------------------------------------------------------------------------------- validate_sfCauchy <- function(alpha, t, param) { if (length(param) == 2) { a <- param[1] b <- param[2] xv <- qcauchy(t) sp <- alpha * pcauchy(a + b * xv) } else { if (length(param) == 4) { t0 <- param[1:2] p0 <- param[3:4] xv <- qcauchy(t0) y <- qcauchy(p0) b <- (y[2] - y[1]) / (xv[2] - xv[1]) a <- y[2] - b * xv[2] xv <- qcauchy(t) sp <- alpha * pcauchy(a + b * xv) } else { stop("Check parameter specification") } } return(sp) } #------------------------------------------------------------------------------- ############### #sfExtremeValue ############### # Independent code Author : Apurva Bhingare # alpha: Type I error (or Type II error) specification takes values between 0 and 1. # t : A vector of time points (information fraction) with increasing # values from >0 and <=1. # param: A vector with a positive, even length. Values must range from 0 to 1, inclusive. #------------------------------------------------------------------------------- validate_sfExtremeValue <- function(alpha, t, param) { if(length(param) == 2){ a<-param[1] b<-param[2] x<- -log(-log(t)) sp<-alpha*exp(-exp(-(a+b*x))) } else { if(length(param) == 4){ t0<-param[1:2] p0<-param[3:4] x<- -log(-log(t0)) y<- -log(-log(p0)) b<-(y[2]-y[1])/(x[2]-x[1]) a<-y[2]-b*x[2] x<- -log(-log(t)) sp<-alpha*exp(-exp(-(a+b*x))) } else{ stop("Check parameter specification") } } return(sp) } #------------------------------------------------------------------------------- ################# #sfExtremeValue2 ################# # Independent code Author : Apurva Bhingare # alpha: Type I error (or Type II error) specification takes values between 0 and 1. # t : A vector of time points (information fraction) with increasing # values from >0 and <=1. # param: A vector with a positive, even length. Values must range from 0 to 1, inclusive. #------------------------------------------------------------------------------- validate_sfExtremeValue2 <- function(alpha, t, param) { if(length(param) == 2){ a<-param[1] b<-param[2] xv<- log(-log(1-t)) sp<-alpha*(1-exp(-exp((a+b*xv)))) } else { if(length(param) == 4){ t0<-param[1:2] p0<-param[3:4] xv<- log(-log(1-t0)) y<- log(-log(1-p0)) b<-(y[2]-y[1])/(xv[2]-xv[1]) a<-y[2]-b*xv[2] xv<- log(-log(1-t)) sp<-alpha*(1-exp(-exp((a+b*xv)))) } else{ stop("Check parameter specification") } } return(sp) } #------------------------------------------------------------------------------- ########### #sfBetaDist ########### # Independent code Author : Apurva Bhingare # alpha: Type I error (or Type II error) specification takes values between 0 and 1. # t : A vector of time points (information fraction) with increasing # values from >0 and <=1. # param: A vector with a positive, even length. Values must range from 0 to 1, inclusive. #------------------------------------------------------------------------------- validate_sfBetaDist <- function(alpha, t, param){ t[t > 1] <- 1 sp <- alpha * stats::pbeta(t, param[1], param[2]) return(sp) } #------------------------------------------------------------------------------- ################# #sfNormal ################# # Independent code Author : Apurva Bhingare # alpha: Type I error (or Type II error) specification takes values between 0 and 1. # t : A vector of time points (information fraction) with increasing # values from >0 and <=1. # param: A vector with a positive, even length. Values must range from 0 to 1, inclusive. #------------------------------------------------------------------------------- validate_sfNormal <- function(alpha, t, param) { if(length(param) == 2){ a<-param[1] b<-param[2] xv <- qnorm(1 * (!is.element(t, 1)) * t) y <- pnorm(a + b * xv) sp <- alpha * (1 * (!is.element(t, 1)) * y + 1 * is.element(t, 1)) } else { if(length(param) == 4){ t0<-param[1:2] p0<-param[3:4] xv<-qnorm(t0) y<-qnorm(p0) b<-(y[2]-y[1])/(xv[2]-xv[1]) a<-y[2]-b*xv[2] xv <- qnorm(1 * (!is.element(t, 1)) * t) y <- pnorm(a + b * xv) sp <- alpha * (1 * (!is.element(t, 1)) * y + 1 * is.element(t, 1)) } else{ stop("Check parameter specification") } } return(sp) } #------------------------------------------------------------------------------- #varBinomial #----------- # ratio: sample size ratio for group 2 divided by group 1 # x: Number of "successes" in the combined control and experimental groups # n: Number of observations in the combined control and experimental groups # delta: # (1) scale="RR", delta0 is the logarithm of the relative risk of event rates (p10 / p20) # (2) scale="OR", delta0 is the difference in natural logarithm of the odds-ratio validate_varBinom_rr<-function(x, n, delta , ratio, scale = "rr"){ a <- ratio+1 RR <- exp(delta) p <- x/n if(delta==0){ v <- (((1 - p) / p) * a^2/(a-1))/n }else{ p1 <- p * a / (ratio * RR + 1) p2 <- RR * p1 t1 <- a * RR t2 <- -(RR * ratio + p2 * ratio + 1 + p1 * RR) t3 <- ratio * p2 + p1 p10 <- ((-t2 - sqrt(t2^2 - 4 * t1 * t3)) / 2)/t1 p20 <- RR * p10 v <- (a * ((1 - p10) / p10 + (1 - p20) / ratio / p20))/n } return(v) } validate_varBinom_or<-function(x, n, delta , ratio, scale = "OR"){ v <- rep(0, max(length(delta), length(x), length(ratio), length(n))) p <- x/n OR <- exp(delta) a <- (ratio + 1) b<- OR - 1 c <- -p * a d <- 1 + (a-1) * (b+1) + (b) * c p10 <- (-d + sqrt(d^2 - 4 * b * c)) / 2 / b p20 <- (b+1) * p10 / (1 + p10 * b) v <- (a* (1 / p10 / (1 - p10) + 1 / p20 / (1 - p20) / (a-1)))/n v[delta == 0] <- (1 / p / (1 - p) * (1 + 1 / (a-1)) * a)/n return(v) } validate_varBinom_Diff<-function(x, n, delta , ratio){ a <- ratio+1 p <- x/n if(delta==0){ x0 <- n*p/a x1 <- x0*(a-1) n0 <- n/(1+ratio) n1 <- n-n0 R1<-x1/n1 R0<-x0/n0 v <- (R1*(1-R1)/n1 + R0*(1-R0)/n0) } return(v) } #------------------------------------------------------------------------------- ##eEvents #-------- ## These independently coded functions have been implemented from the ## Lachin and Foulkes (1986) paper ## compute expected value of status (event/censor) expect_status <- function(lambda, drprate, maxstudy, accdur) { rtsum <- lambda + drprate t1 <- lambda / rtsum t2n <- exp(-rtsum * (maxstudy - accdur)) - exp(-rtsum * maxstudy) t2d <- rtsum * accdur t2 <- 1 - (t2n / t2d) op <- t1 * t2 return(op) } ## compute # of events per arm ## Inputs: lambda - the hazard rate on a single arm ## drprate - dropout rate ## maxstudy - max. study duration ## accdur - accrual duration (in the same units as maxstudy) ## totalSS - total sample size ## rndprop - randomisation proportion ## ## Output: events - the expected number of events expect_ev_arm <- function(lambda, drprate, maxstudy, accdur, totalSS, rndprop) { expst <- expect_status(lambda, drprate, maxstudy, accdur) events <- totalSS * rndprop * expst return(events) } #------------------------------------------------------------------------ #gsNormalGrid #------------- #' Grid points for group sequential design numerical integration #' #' Points and weights for Simpson's rule numerical integration from #' p 349 - 350 of Jennison and Turnbull book. #' This is not used for arbitrary integration, but for the canonical form of Jennison and Turnbull. #' mu is computed elsewhere as drift parameter times sqrt of information. #' Since this is a lower-level routine, no checking of input is done; calling routines should #' ensure that input is correct. #' Lower limit of integration can be \code{-Inf} and upper limit of integration can be \code{Inf} #' #' @details #' Jennison and Turnbull (p 350) claim accuracy of \code{10E-6} with \code{r=16}. #' The numerical integration grid spreads out at the tail to enable accurate tail probability calcuations. #' #' #' @param r Integer, at least 2; default of 18 recommended by Jennison and Turnbull #' @param mu Mean of normal distribution (scalar) under consideration #' @param a lower limit of integration (scalar) #' @param b upper limit of integration (scalar \code{> a}) #' #' @return A \code{tibble} with grid points in \code{z} and numerical integration weights in \code{w} #' @export #' #' @examples #' library(dplyr) #' # approximate variance of standard normal (i.e., 1) #' gridpts() %>% summarize(var = sum(z^2 * w * dnorm(z))) #' #' # approximate probability above .95 quantile (i.e., .05) #' gridpts(a = qnorm(.95), b = Inf) %>% summarize(p05 = sum(w * dnorm(z))) gridpts <- function(r = 18, mu = 0, a = -Inf, b = Inf){ # Define odd numbered grid points for real line x <- c(mu - 3 - 4 * log(r / (1:(r - 1))), mu - 3 + 3 * (0:(4 * r)) / 2 / r, mu + 3 + 4 * log(r / (r - 1):1) ) # Trim points outside of [a, b] and include those points if (min(x) < a) x <- c(a, x[x > a]) if (max(x) > b) x <- c(x[x < b], b) # Define even numbered grid points between the odd ones m <- length(x) y <- (x[2:m] + x[1:(m-1)]) / 2 # Compute weights for odd numbered grid points i <- 2:(m-1) wodd <- c(x[2] - x[1], (x[i + 1] - x[i - 1]), x[m] - x[m - 1]) / 6 weven <- 4 * (x[2:m] - x[1:(m-1)]) / 6 # Now combine odd- and even-numbered grid points with their # corresponding weights z <- rep(0, 2*m - 1) z[2 * (1:m) - 1] <- x z[2 * (1:(m-1))] <- y w <- z w[2 * (1:m) - 1] <- wodd w[2 * (1:(m-1))] <- weven return(tibble::tibble(z=z, w=w)) } #------------------------------------------------------------------------------- ## This script contains independently programmed functions for validating some of the functions of the gsDesign package. ######################################################################################### # This Function validates z2Z. # Independent Code Author: Apurva # Independent Code Date: 11/11/2020 ######################################################################################### ## x - Base case Design ## z10 - Stage 1 statistics ## n20 - stage incremental sample size validate_z2z <- function(x, z10, n20) { n10 <- (x$n.I[1]) w1 <- sqrt(n10 / (n10 + n20)) w2 <- sqrt(n20 / (n10 + n20)) z20 <- x$upper$bound[2] z2incr <- (z20 - w1 * z10) / w2 return(z2incr) } ######################################################################################### # This function validates z2NC. # Independent Code Author: Apurva # Independent Code Date: 11/11/2020 ######################################################################################### ## x - Base case Design ## z10 - Stage 1 statistics ## info.frac - information fraction validate_z2NC <- function(x, z10, info.frac) { z20 <- x$upper$bound[2] z2incr <- (z20 - sqrt(info.frac[1]) * z10) / sqrt(1 - info.frac[1]) return(z2incr) } ######################################################################################### # This function validates z2Fisher. # Independent Code Author:Apurva # Independent Code Date:11/11/2020 ######################################################################################### ######################################################################################### ## Using the relation ## P(-2 log (p1p(2)) >= ChiSq_a4)=alpha ## where, ## p1= p.value at stage 1 ## p(2)= incremental p.value at stage 2 ## ChiSq_a4= Upper alpha quantile of chi-square distribution with df=4 ######################################################################################### ## x - Base case Design ## z1 - Stage 1 statistics validate_z2Fisher <- function(x, z1) { alpha <- 1 - pnorm(x$upper$bound[2]) qalpha <- qchisq(alpha, df = 4, lower.tail = FALSE) y <- exp(-0.5 * qalpha - log(pnorm(-z1))) zzfsr <- qnorm(y, lower.tail = FALSE) return(zzfsr) } ######################################################################################### # This Function validates comp_bdry # Reference: Sequential Analysis, Abraham Wald, 1947 # Independent Code Author: Imran # Independent Code Date: 11/11/2020 ######################################################################################### ## alpha - type 1 error ## beta - type 2 error ## p0 - proportion under null hypothesis ## p1 - proportion under alternate hypothesis ## n- Sample size validate_comp_bdry <- function(alpha, beta, p0, p1, n) { A <- (1 - beta) / alpha B <- beta / (1 - alpha) tmpratio <- (1 - p1) / (1 - p0) bndry_den <- log((p1 / p0) * (1 / tmpratio)) LB <- (log(B) - (n * log(tmpratio))) / bndry_den UB <- (log(A) - (n * log(tmpratio))) / bndry_den boundaries <- list("LB" = LB, "UB" = UB) return(boundaries) } ######################################################################################### ## Reference: Sequential Analysis, Abraham Wald, 1947 # This Function validates binomialSPRT. # Independent Code Author: Imran # Independent Code Date: 11/11/2020 ######################################################################################### ## alpha - type 1 error ## beta - type 2 error ## p0 - proportion under null hypothesis ## p1 - proportion under alternate hypothesis ## nmin - minimum sample size for doing ratio test ## nmax - maximum sample size for doing ratio test Validate_comp_sprt_bnd <- function(alpha, beta, p0, p1, nmin, nmax) { lbnd <- c() ubnd <- c() for (i in nmin:nmax) { x <- validate_comp_bdry(alpha, beta, p0, p1, i) lbnd <- c(lbnd, x$LB) ubnd <- c(ubnd, x$UB) } df <- data.frame( n = nmin:nmax, lbnd = lbnd, ubnd = ubnd, lbrnd = floor(lbnd), ubrnd = ceiling(ubnd) ) slope <- as.numeric(coef(lm(ubnd ~ n, data = df))["n"]) ## the slope for the boundary lines lintercept <- as.numeric(coef(lm(lbnd ~ n, data = df))["(Intercept)"]) ## y-intercept of lower boundary uintercept <- as.numeric(coef(lm(ubnd ~ n, data = df))["(Intercept)"]) ## y-intercept of upper boundary result <- list("bounds" = df, "slope" = slope, "lowint" = lintercept, "upint" = uintercept) return(result) } #------------------------------------------------------------------------------- #save_gg_plot() : Function to save plots created with ggplot2 package and saved # with ggsave() function. # # plot : Plot to save, defaults to last plot displayed. # path : Path of the directory to save plot to: path and filename are # combined to create the fully qualified file name. # width : the width of the device (in inches). # height: the height of the device (in inches). # dpi : Plot resolution. # Plot size in units ("in", "cm", or "mm") #------------------------------------------------------------------------------- save_gg_plot <- function(code, width = 4, height = 4) { path <- tempfile(fileext = ".png") ggplot2::ggsave(path, plot = code, width = width, height = height, dpi = 72, units = "in") path } #------------------------------------------------------------------------------- # save_gr_plot(): Function to save plots created with graphics package and saved # with png() function. # width: the width of the device (in pixels). # height: the height of the device (in pixels). #------------------------------------------------------------------------------- save_gr_plot <- function(code, width = 400, height = 400) { path <- tempfile(fileext = ".png") png(path, width = width, height = height) oldpar <- par(no.readonly = TRUE) on.exit(par(oldpar)) code invisible(dev.off()) path } #------------------------------------------------------------------------------- #ssrCP : ssrCP() adapts 2-stage group sequential designs to 2-stage sample size # re-estimation designs based on interim analysis conditional power. # x : design object # beta : type 2 error # delta : to be used for true effect size delta #------------------------------------------- validate_ssrCP <- function(x, z1){ beta <- x$beta delta <-z1/ sqrt(x$n.I[1]) n1 <- x$n.I[1] n2 <- x$n.I[2] SE <- delta/z1 res1 <- (n1 *SE^2)/ delta^2 res2 <- (x$upper$bound[2] * sqrt(n2) - z1 * sqrt(n1)) / (sqrt(n2 - n1)) - (qnorm(beta)) final_res <- n1 + (res1 * res2 * res2) CP <- condPower(z1 = z1, n2 = n1, z2 = z2NC, theta = NULL, x = x) expected_out <- list(final_res, CP) return(expected_out) } #------------------------------------------------------------------------------