#### This set of tests, including those involving fitSpline, can be removed when splitSplines is deprecated. ## splitSplines is the only function that calls fitSpline. ## All of these tests have been converted to use smoothSpline and byIndv4Times_SplinesGRs. cat("#### Test fitSpline using NCSS with leaf data when there are missing values\n") test_that("leaf_growthPheno", { skip_if_not_installed("growthPheno") skip_on_cran() library(dae) library(ggplot2) library(growthPheno) # A small subset of Exp 270 leaf tracking data data(testSpline) responses <- names(test)[5:ncol(test)] ##Test the fail options for NCSS testthat::expect_error(splitSplines(test, response = "Area", x="xDays", individuals = "Snapshot.ID.Tag", df = 4, na.x.action = "fail")) testthat::expect_error(splitSplines(test, response = "Length.1", x="xDays", individuals = "Snapshot.ID.Tag", df = 4, na.y.action = "fail")) ##Fit some splines - exclude y leaf.dat <- test testthat::expect_warning( for (resp in responses) leaf.dat <- splitSplines(leaf.dat, response = resp, x="xDays", df = 4), regexp = "Need at least 4 distinct x values to fit a spline - all fitted values set to NA") testthat::expect_equal(sum(!is.na(leaf.dat$Length.1)), 85) testthat::expect_equal(sum(!is.na(leaf.dat$Length.1.smooth)), 82) testthat::expect_equal(sum(is.na(leaf.dat$Area.smooth)), 3) testthat::expect_equal(sum(!is.na(leaf.dat$Length.3.smooth[13:24])), 4) testthat::expect_equal(sum(!is.na(leaf.dat$Length.3.smooth[49:60])), 0) ##trim leaf.dat <- test for (resp in responses) leaf.dat <- splitSplines(leaf.dat, response = resp, x="xDays", df = 4, na.y.action = "trim") testthat::expect_equal(sum(!is.na(leaf.dat$Length.1)), 85) testthat::expect_equal(sum(!is.na(leaf.dat$Length.1.smooth)), 86) testthat::expect_lt(abs(leaf.dat$Length.1.smooth[57] - 11.067455), 1e-05) testthat::expect_equal(sum(!is.na(leaf.dat$Length.3.smooth[13:24])), 4) ##Test ltrimx leaf.dat <- test for (resp in responses) leaf.dat <- splitSplines(leaf.dat, response = resp, x="xDays", df = 4, na.y.action = "ltrim", deriv=1, suffices.deriv="AGRdv", extra.rate = c(RGRdv = "RGR")) testthat::expect_equal(length(lapply(responses, function(resp, data) { resp <- paste(resp,"smooth", sep = ".") testthat::expect_equal(sum(is.na(data[[resp]])), sum(is.na(data[[paste(resp,"AGRdv",sep = ".")]])), sum(is.na(data[[paste(resp,"RGRdv",sep = ".")]]))) }, data = leaf.dat)), 4) testthat::expect_equal(nrow(leaf.dat), 96) testthat::expect_equal(ncol(leaf.dat), 20) testthat::expect_equal(sum(!is.na(leaf.dat$Length.1)), 85) testthat::expect_equal(sum(!is.na(leaf.dat$Length.1.smooth)), 87) testthat::expect_lt(abs(leaf.dat$Length.1.smooth[57] - 11.067455), 1e-05) testthat::expect_equal(sum(!is.na(leaf.dat$Length.3.smooth[13:24])), 7) leaf.dat.noC <- leaf.dat ##Test ltrimx with correctBoundaries leaf.dat <- test for (resp in responses) leaf.dat <- splitSplines(leaf.dat, response = resp, x="xDays", df = 4, na.y.action = "ltrim", correctBoundaries = TRUE) testthat::expect_equal(nrow(leaf.dat), 96) testthat::expect_equal(ncol(leaf.dat), 12) testthat::expect_equal(sum(!is.na(leaf.dat$Length.1)), 85) testthat::expect_equal(sum(!is.na(leaf.dat$Length.1.smooth)), 87) testthat::expect_lt(abs(leaf.dat$Length.1.smooth[57] - 11.05895), 1e-05) testthat::expect_equal(sum(!is.na(leaf.dat$Length.3.smooth[13:24])), 7) leaf.dat$Length.1.smooth.noC <- leaf.dat.noC$Length.1.smooth leaf.dat$Length.2.smooth.noC <- leaf.dat.noC$Length.2.smooth leaf.dat$Length.3.smooth.noC <- leaf.dat.noC$Length.3.smooth ggplot(leaf.dat, aes(x = xDays, y = Length.1)) + geom_line() + geom_line(aes(x = xDays, Length.1.smooth), colour = "blue") + geom_line(aes(x = xDays, Length.1.smooth.noC), colour = "red") + facet_wrap(~ Snapshot.ID.Tag) ##Test utrimx leaf.dat <- test for (resp in responses) leaf.dat <- splitSplines(leaf.dat, response = resp, x="xDays", df = 4, na.y.action = "utrim") testthat::expect_equal(nrow(leaf.dat), 96) testthat::expect_equal(ncol(leaf.dat), 12) testthat::expect_equal(sum(!is.na(leaf.dat$Length.1)), 85) testthat::expect_equal(sum(!is.na(leaf.dat$Length.1.smooth)), 92) testthat::expect_lt(abs(leaf.dat$Length.1.smooth[57] - 11.067455), 1e-05) testthat::expect_equal(sum(!is.na(leaf.dat$Length.3.smooth[13:24])), 9) ##Test utrimx leaf.dat <- test for (resp in responses) leaf.dat <- splitSplines(leaf.dat, response = resp, x="xDays", df = 4, na.y.action = "allx") testthat::expect_equal(nrow(leaf.dat), 96) testthat::expect_equal(ncol(leaf.dat), 12) testthat::expect_equal(sum(!is.na(leaf.dat$Length.1)), 85) testthat::expect_equal(sum(!is.na(leaf.dat$Length.1.smooth)), 93) testthat::expect_lt(abs(leaf.dat$Length.1.smooth[57] - 11.067455), 1e-05) testthat::expect_equal(sum(!is.na(leaf.dat$Length.3.smooth[13:24])), 12) testthat::expect_equal(sum(is.na(leaf.dat$Length.3.smooth[94:96])), 3) ##Test omit in fitSpline - Length 3 leaf.dat <- test carts <- levels(leaf.dat$Snapshot.ID.Tag) fit <- vector(mode = "list", length = 0) nrows <- vector(mode = "list", length = length(carts)) nrows <- list(6,4,5,3,2,6,1,1) names(nrows) <- carts for (cart in carts) { fit[[cart]] <- fitSpline(subset(leaf.dat, Snapshot.ID.Tag == cart), response = "Length.3", response.smoothed = "sLength.3", x="xDays", df = 4, na.x.action = "omi", na.y.action = "omit", deriv=1, suffices.deriv="AGRdv", extra.rate = c(RGRdv = "RGR")) testthat::expect_equal(nrows[[cart]], nrow(fit[[cart]]$predictions)) } ##Test omit in fitSpline - Length 2 with a 0 length data.frame fit <- vector(mode = "list", length = 0) nrows <- list(11,12,12,12,9,12,0,9) names(nrows) <- carts for (cart in carts) { fit[[cart]] <- fitSpline(subset(leaf.dat, Snapshot.ID.Tag == cart), response = "Length.2", response.smoothed = "sLength.2", x="xDays", df = 4, na.x.action = "omi", na.y.action = "omit", deriv=1, suffices.deriv="AGRdv", extra.rate = c(RGRdv = "RGR")) testthat::expect_equal(nrows[[cart]], nrow(fit[[cart]]$predictions)) } testthat::expect_equal(ncol(fit[[cart]]$predictions), 4) ##Test omit in splitSplines - get full data.frame because of merge in splitSplines leaf.dat <- test for (resp in responses) leaf.dat <- splitSplines(leaf.dat, response = resp, x="xDays", df = 4, na.x.action = "omi", na.y.action = "omit") testthat::expect_equal(nrow(leaf.dat), 96) testthat::expect_equal(ncol(leaf.dat), 12) testthat::expect_equal(sum(!is.na(leaf.dat$Length.1)), 85) testthat::expect_equal(sum(!is.na(leaf.dat$Length.1.smooth)), 82) leaf.dat <- test for (resp in responses) leaf.dat <- splitSplines(leaf.dat, response = resp, x="xDays", df = 4, na.y.action = "omit") ##Test omit in fitSpline - Length 2 with a 0 length data.frame leaf.dat <- test carts <- levels(leaf.dat$Snapshot.ID.Tag) fit <- vector(mode = "list", length = 0) nrows <- list(6,4,5,3,2,6,1,1) names(nrows) <- carts for (cart in carts) { fit[[cart]] <- fitSpline(subset(leaf.dat, Snapshot.ID.Tag == cart), response = "Length.3", response.smoothed = "sLength.3", x="xDays", correctBoundaries = FALSE, df = 4, na.x.action = "omit", na.y.action = "omit") testthat::expect_equal(ncol(fit[[cart]]$predictions), 2) testthat::expect_equal(nrow(fit[[cart]]$predictions), nrows[[cart]]) } fitC <- vector(mode = "list", length = 0) nrows <- list(6,4,5,3,2,6,1,1) names(nrows) <- carts for (cart in carts) { fitC[[cart]] <- fitSpline(subset(leaf.dat, Snapshot.ID.Tag == cart), response = "Length.3", response.smoothed = "sLength.3", x="xDays", correctBoundaries = TRUE, df = 4, na.x.action = "omit", na.y.action = "omit") testthat::expect_equal(ncol(fitC[[cart]]$predictions), 2) testthat::expect_equal(nrow(fitC[[cart]]$predictions), nrows[[cart]]) } testthat::expect_true(all(abs(fit[["047162-C"]]$sLength.3 - fitC[["047162-C"]]$sLength.3) > 0.01)) testthat::expect_true(all(abs(fit[["047164-S"]]$sLength.3. - fitC[["047164-S"]]$sLength.3) < 1e-05)) }) cat("#### Test fitSpline using NCSS with leaf data for log-smoothing\n") test_that("leaf_growthPheno", { skip_if_not_installed("growthPheno") skip_on_cran() library(dae) library(ggplot2) library(growthPheno) # A small subset of Exp 270 leaf tracking data data(testSpline) ##Smooth splines using identity and logarithm transformations - exclude y leaf.dat <- test leaf.dat$Area.log <- log(leaf.dat$Area) #Investigate AGR and RGR calculations leaf.dat <- splitSplines(leaf.dat, response="Area", x="xDays", df = 4, smoothing.method = "log", deriv=1, suffices.deriv="RGRdv", extra.rate = c(AGRdv = "AGR")) names(leaf.dat)[(match(c("Area.smooth", "Area.smooth.AGRdv","Area.smooth.RGRdv"), names(leaf.dat)))] <- paste(c("Area.smooth", "Area.smooth.AGRdv", "Area.smooth.RGRdv"), "log", sep = ".") testthat::expect_equal(sum(is.na(leaf.dat$Area.smooth.log)), 3) testthat::expect_false(any(abs(leaf.dat$Area.smooth.AGRdv.log[1:3] - c(2.993617, 3.682534, 4.568932)) > 1e-03, na.rm = TRUE)) testthat::expect_false(any(abs(leaf.dat$Area.smooth.RGRdv.log[1:3] - c(0.1878992, 0.1913271, 0.1955440)) > 1e-03, na.rm = TRUE)) #Manual calculation of log smooth leaf.dat <- splitSplines(leaf.dat, response = "Area.log", x="xDays", df = 4) leaf.dat$Area.log.smooth <- exp(leaf.dat$Area.log.smooth) testthat::expect_false(any(abs(leaf.dat$Area.log.smooth - leaf.dat$Area.smooth.log) > 0.1, na.rm = TRUE)) testthat::expect_equal(sum(is.na(leaf.dat$Area.log.smooth)), 3) #identity smoothing scale calculation of AGR and RGR leaf.dat <- splitSplines(leaf.dat, response="Area", x="xDays", df = 4, deriv=1, suffices.deriv="AGRdv", extra.rate = c(RGRdv = "RGR")) testthat::expect_false(any(abs(leaf.dat$Area.smooth[1:3] - c(14.48536, 18.89667, 23.69953)) > 1e-03, na.rm = TRUE)) testthat::expect_false(any(abs(leaf.dat$Area.smooth.AGRdv[1:3] - c(4.341943, 4.550298, 5.099377)) > 1e-03, na.rm = TRUE)) testthat::expect_false(any(abs(leaf.dat$Area.smooth.RGRdv[1:3] - c(0.2997469, 0.2407990, 0.2151678)) > 1e-03, na.rm = TRUE)) }) cat("#### Test correctBoundaries for NCSS in fitSpline using a single plant from Rice germplasm\n") test_that("area_correctBoundaries", { skip_if_not_installed("growthPheno") skip_on_cran() library(dae) library(ggplot2) library(growthPheno) data(area.dat) fity <- smooth.spline(area.dat$xDays,area.dat$Area1,cv=FALSE) fit <- as.data.frame(fity[1:2]) fit$AGR <- c(NA, diff(fit$y)/diff(fit$x)) fit$RGR <- c(NA, diff(log(fit$y))/diff(fit$x)) fit$yC <- fitSpline(area.dat, x = "xDays", response = "Area1", response.smoothed = "Area1.smooth", correctBoundaries = TRUE)$predictions$Area1.smooth ggplot(fit) + geom_line(aes(x=x, y=y)) + geom_line(aes(x=x, y=yC), colour = "red") fit$AGRC <- c(NA, diff(fit$yC)/diff(fit$x)) fit$RGRC <- c(NA, diff(log(fit$yC))/diff(fit$x)) ggplot(fit) + geom_line(aes(x=x, y=AGR)) + geom_line(aes(x=x, y=AGRC), colour = "red") ggplot(fit) + geom_line(aes(x=x, y=RGR)) + geom_line(aes(x=x, y=RGRC), colour = "red") testthat::expect_true(abs(var(fit$yC) - 66391.75) < 1e-02) testthat::expect_true(abs(var(fit$AGRC, na.rm = TRUE) - 153.9782) < 1e-03) testthat::expect_true(abs(var(fit$RGRC, na.rm = TRUE) - 0.0009603766) < 1e-05) #specify df fit <- area.dat fit$Area1.smooth <- fitSpline(area.dat, x = "xDays", response = "Area1", response.smoothed = "Area1.smooth", df = 4, correctBoundaries = FALSE)$predictions$Area1.smooth ggplot(fit) + geom_line(aes(x=xDays, y=Area1)) + geom_line(aes(x=xDays, y=Area1.smooth), colour = "blue") fit$AGR <- c(NA, diff(fit$Area1.smooth)/diff(fit$xDays)) fit$RGR <- c(NA, diff(log(fit$Area1.smooth))/diff(fit$xDays)) ggplot(fit) + geom_line(aes(x=xDays, y=Area1.AGR)) + geom_line(aes(x=xDays, y=AGR),colour = "blue") ggplot(fit) + geom_line(aes(x=xDays, y=Area1.RGR)) + geom_line(aes(x=xDays, y=RGR),colour = "blue") testthat::expect_true(abs(var(fit$Area1.smooth) - 65264.71) < 1e-02) testthat::expect_true(abs(var(fit$AGR, na.rm = TRUE) - 123.8462) < 1e-03) testthat::expect_true(abs(var(fit$RGR, na.rm = TRUE) - 0.005474027) < 1e-03) #Correct the boundaries fit$Area1.smooth.C <- fitSpline(area.dat, x = "xDays", response = "Area1", response.smoothed = "Area1.smooth", df = 4, correctBoundaries = TRUE)$predictions$Area1.smooth ggplot(fit) + geom_line(aes(x=xDays, y=Area1)) + geom_line(aes(x=xDays, y=Area1.smooth),colour = "blue") + geom_line(aes(x=xDays, y=Area1.smooth.C), colour = "red") fit$AGRC <- c(NA, diff(fit$Area1.smooth.C)/diff(fit$xDays)) fit$RGRC <- c(NA, diff(log(fit$Area1.smooth.C))/diff(fit$xDays)) ggplot(fit) + geom_line(aes(x=xDays, y=Area1.AGR)) + geom_line(aes(x=xDays, y=AGR), colour = "blue") + geom_line(aes(x=xDays, y=AGRC), colour = "red") ggplot(fit) + geom_line(aes(x=xDays, y=Area1.RGR)) + geom_line(aes(x=xDays, y=RGR), colour = "blue") + geom_line(aes(x=xDays, y=RGRC), colour = "red") testthat::expect_true(abs(var(fit$Area1.smooth.C) - 66372.73) < 1e-02) testthat::expect_true(abs(var(fit$AGRC, na.rm = TRUE) - 145.0717) < 1e-03) testthat::expect_true(abs(var(fit$RGRC, na.rm = TRUE) - 0.000893429) < 1e-04) }) cat("#### Test fitSpline using PS with leaf data when there are missing values\n") test_that("leaf_growthPheno", { skip_if_not_installed("growthPheno") skip_on_cran() library(dae) library(ggplot2) library(growthPheno) # A small subset of Exp 270 leaf tracking data data(testSpline) responses <- names(test)[5:ncol(test)] ##Test the fail options for PS testthat::expect_error(splitSplines(test, response = "Area", x="xDays", spline.type = "PS", lambda = 0.1, npspline.segments = 4, na.x.action = "fail")) testthat::expect_error(splitSplines(test, response = "Length.1", x="xDays", spline.type = "PS", lambda = 0.1, npspline.segments = 4, na.y.action = "fail")) ##Fit some splines - exclude y leaf.dat <- test resp <- responses[2] testthat::expect_warning( for (resp in responses) leaf.dat <- splitSplines(leaf.dat, response = resp, x="xDays", spline.type = "PS", lambda = 0.1, npspline.segments = 4), regexp = "Need at least 4 distinct x values to fit a spline - all fitted values set to NA") testthat::expect_equal(sum(!is.na(leaf.dat$Length.1)), 85) testthat::expect_equal(sum(!is.na(leaf.dat$Length.1.smooth)), 82) testthat::expect_equal(sum(is.na(leaf.dat$Area.smooth)), 3) testthat::expect_equal(sum(!is.na(leaf.dat$Length.3.smooth[13:24])), 4) testthat::expect_equal(sum(!is.na(leaf.dat$Length.3.smooth[49:60])), 0) ##trim leaf.dat <- test testthat::expect_warning( for (resp in responses) leaf.dat <- splitSplines(leaf.dat, response = resp, x="xDays", spline.type = "PS", lambda = 0.1, npspline.segments = 4, na.y.action = "trim"), regexp = "Need at least 4 distinct x values to fit a spline - all fitted values set to NA") testthat::expect_equal(sum(!is.na(leaf.dat$Length.1)), 85) testthat::expect_equal(sum(!is.na(leaf.dat$Length.1.smooth)), 86) testthat::expect_lt(abs(leaf.dat$Length.1.smooth[57] - 11.07072), 1e-05) testthat::expect_equal(sum(!is.na(leaf.dat$Length.3.smooth[13:24])), 4) ##Test ltrimx leaf.dat <- test for (resp in responses) leaf.dat <- splitSplines(leaf.dat, response = resp, x="xDays", spline.type = "PS", lambda = 0.1, npspline.segments = 4, na.y.action = "ltrim", deriv=1, suffices.deriv="AGRdv", extra.rate = c(RGRdv = "RGR")) testthat::expect_equal(length(lapply(responses, function(resp, data) { resp <- paste(resp,"smooth", sep = ".") testthat::expect_equal(sum(is.na(data[[resp]])), sum(is.na(data[[paste(resp,"AGRdv",sep = ".")]])), sum(is.na(data[[paste(resp,"RGRdv",sep = ".")]]))) }, data = leaf.dat)), 4) testthat::expect_equal(nrow(leaf.dat), 96) testthat::expect_equal(ncol(leaf.dat), 20) testthat::expect_equal(sum(!is.na(leaf.dat$Length.1)), 85) testthat::expect_equal(sum(!is.na(leaf.dat$Length.1.smooth)), 87) testthat::expect_lt(abs(leaf.dat$Length.1.smooth[57] - 11.07072), 1e-05) testthat::expect_equal(sum(!is.na(leaf.dat$Length.3.smooth[13:24])), 7) leaf.dat.noC <- leaf.dat ##Test ltrimx with correctBoundaries (which is ignored) leaf.dat <- test for (resp in responses) leaf.dat <- splitSplines(leaf.dat, response = resp, x="xDays", spline.type = "PS", lambda = 0.1, npspline.segments = 4, na.y.action = "ltrim", correctBoundaries = TRUE) testthat::expect_equal(nrow(leaf.dat), 96) testthat::expect_equal(ncol(leaf.dat), 12) testthat::expect_equal(sum(!is.na(leaf.dat$Length.1)), 85) testthat::expect_equal(sum(!is.na(leaf.dat$Length.1.smooth)), 87) testthat::expect_lt(abs(leaf.dat$Length.1.smooth[57] - 11.07072), 1e-05) testthat::expect_equal(sum(!is.na(leaf.dat$Length.3.smooth[13:24])), 7) ##Test utrimx leaf.dat <- test for (resp in responses) leaf.dat <- splitSplines(leaf.dat, response = resp, x="xDays", spline.type = "PS", lambda = 0.1, npspline.segments = 4, na.y.action = "utrim") testthat::expect_equal(nrow(leaf.dat), 96) testthat::expect_equal(ncol(leaf.dat), 12) testthat::expect_equal(sum(!is.na(leaf.dat$Length.1)), 85) testthat::expect_equal(sum(!is.na(leaf.dat$Length.1.smooth)), 92) testthat::expect_lt(abs(leaf.dat$Length.1.smooth[57] - 11.02593), 1e-05) testthat::expect_equal(sum(!is.na(leaf.dat$Length.3.smooth[13:24])), 9) ##Test utrimx leaf.dat <- test for (resp in responses) leaf.dat <- splitSplines(leaf.dat, response = resp, x="xDays", spline.type = "PS", lambda = 0.1, npspline.segments = 4, na.y.action = "allx") testthat::expect_equal(nrow(leaf.dat), 96) testthat::expect_equal(ncol(leaf.dat), 12) testthat::expect_equal(sum(!is.na(leaf.dat$Length.1)), 85) testthat::expect_equal(sum(!is.na(leaf.dat$Length.1.smooth)), 93) testthat::expect_lt(abs(leaf.dat$Length.1.smooth[57] - 11.02593), 1e-05) testthat::expect_equal(sum(!is.na(leaf.dat$Length.3.smooth[13:24])), 12) testthat::expect_equal(sum(is.na(leaf.dat$Length.3.smooth[94:96])), 3) ##Test omit in fitSpline - Length 3 leaf.dat <- test carts <- levels(leaf.dat$Snapshot.ID.Tag) fit <- vector(mode = "list", length = 0) nrows <- vector(mode = "list", length = length(carts)) nrows <- list(6,4,5,3,2,6,1,1) names(nrows) <- carts for (cart in carts) { fit[[cart]] <- fitSpline(subset(leaf.dat, Snapshot.ID.Tag == cart), response = "Length.3", response.smoothed = "sLength.3", x="xDays", spline.type = "PS", lambda = 0.1, npspline.segments = 4, na.x.action = "omi", na.y.action = "omit", deriv=1, suffices.deriv="AGRdv", extra.rate = c(RGRdv = "RGR")) testthat::expect_equal(nrows[[cart]], nrow(fit[[cart]]$predictions)) } ##Test omit in fitSpline - Length 2 with a 0 length data.frame fit <- list() nrows <- list(11,12,12,12,9,12,0,9) names(nrows) <- carts for (cart in carts) { fit[[cart]] <- fitSpline(subset(leaf.dat, Snapshot.ID.Tag == cart), response = "Length.2", response.smoothed = "sLength.2", x="xDays", spline.type = "PS", lambda = 0.1, npspline.segments = 4, na.x.action = "omi", na.y.action = "omit", deriv=1, suffices.deriv="AGRdv", extra.rate = c(RGRdv = "RGR")) testthat::expect_equal(nrows[[cart]], nrow(fit[[cart]]$predictions)) } testthat::expect_equal(ncol(fit[[cart]]$predictions), 4) ##Test omit in splitSplines - get full data.frame because of merge in splitSplines leaf.dat <- test for (resp in responses) leaf.dat <- splitSplines(leaf.dat, response = resp, x="xDays", spline.type = "PS", lambda = 0.1, npspline.segments = 4, na.x.action = "omi", na.y.action = "omit") testthat::expect_equal(nrow(leaf.dat), 96) testthat::expect_equal(ncol(leaf.dat), 12) testthat::expect_equal(sum(!is.na(leaf.dat$Length.1)), 85) testthat::expect_equal(sum(!is.na(leaf.dat$Length.1.smooth)), 82) leaf.dat <- test for (resp in responses) leaf.dat <- splitSplines(leaf.dat, response = resp, x="xDays", spline.type = "PS", lambda = 0.1, npspline.segments = 4, na.y.action = "omit") ##Test omit in fitSpline - Length 2 with a 0 length data.frame leaf.dat <- test carts <- levels(leaf.dat$Snapshot.ID.Tag) fit <- vector(mode = "list", length = 0) nrows <- list(6,4,5,3,2,6,1,1) names(nrows) <- carts for (cart in carts) { fit[[cart]] <- fitSpline(subset(leaf.dat, Snapshot.ID.Tag == cart), response = "Length.3", response.smoothed = "sLength.3", x="xDays", correctBoundaries = FALSE, spline.type = "PS", lambda = 0.1, npspline.segments = 4, na.x.action = "omit", na.y.action = "omit") testthat::expect_equal(ncol(fit[[cart]]$predictions), 2) testthat::expect_equal(nrow(fit[[cart]]$predictions), nrows[[cart]]) } fitC <- vector(mode = "list", length = 0) nrows <- list(6,4,5,3,2,6,1,1) names(nrows) <- carts for (cart in carts) { fitC[[cart]] <- fitSpline(subset(leaf.dat, Snapshot.ID.Tag == cart), response = "Length.3", response.smoothed = "sLength.3", x="xDays", spline.type = "PS", lambda = 0.1, npspline.segments = 4, na.x.action = "omit", na.y.action = "omit") testthat::expect_equal(ncol(fitC[[cart]]$predictions), 2) testthat::expect_equal(nrow(fitC[[cart]]$predictions), nrows[[cart]]) } }) cat("#### Test splitSplines using PS with leaf data, including log-smoothing\n") test_that("leaf_growthPheno", { skip_if_not_installed("growthPheno") skip_on_cran() library(dae) library(ggplot2) library(growthPheno) # A small subset of Exp 270 leaf tracking data data(testSpline) ##Smooth splines using identity and logarithm transformations - exclude y leaf.dat <- test leaf.dat$Area.log <- log(leaf.dat$Area) #Investigate AGR and RGR calculations leaf.dat <- splitSplines(leaf.dat, response="Area", x="xDays", spline.type = "PS", lambda = 0.1, npspline.segments = 4, smoothing.method = "log", deriv=1, suffices.deriv="RGRdv", extra.rate = c(AGRdv = "AGR")) names(leaf.dat)[(match(c("Area.smooth", "Area.smooth.AGRdv","Area.smooth.RGRdv"), names(leaf.dat)))] <- paste(c("Area.smooth", "Area.smooth.AGRdv", "Area.smooth.RGRdv"), "log", sep = ".") testthat::expect_equal(sum(is.na(leaf.dat$Area.smooth.log)), 3) testthat::expect_false(any(abs(leaf.dat$Area.smooth.AGRdv.log[1:3] - c(3.009742, 3.704214, 4.556166)) > 1e-03, na.rm = TRUE)) testthat::expect_false(any(abs(leaf.dat$Area.smooth.RGRdv.log[1:3] - c(0.1893088, 0.1924901, 0.1950459)) > 1e-03, na.rm = TRUE)) #Manual calculation of log smooth leaf.dat <- splitSplines(leaf.dat, response = "Area.log", x="xDays", spline.type = "PS", lambda = 0.1, npspline.segments = 4) leaf.dat$Area.log.smooth <- exp(leaf.dat$Area.log.smooth) testthat::expect_false(any(abs(leaf.dat$Area.log.smooth - leaf.dat$Area.smooth.log) > 0.1, na.rm = TRUE)) testthat::expect_equal(sum(is.na(leaf.dat$Area.log.smooth)), 3) #identity smoothing scale calculation of AGR and RGR leaf.dat <- splitSplines(leaf.dat, response="Area", x="xDays", spline.type = "PS", lambda = 0.1, npspline.segments = 4, deriv=1, suffices.deriv="AGRdv", extra.rate = c(RGRdv = "RGR")) testthat::expect_false(any(abs(leaf.dat$Area.smooth[1:3] - c(14.89518, 18.97489, 23.57340)) > 1e-03, na.rm = TRUE)) testthat::expect_false(any(abs(leaf.dat$Area.smooth.AGRdv[1:3] - c(3.910074, 4.294226, 4.947678)) > 1e-03, na.rm = TRUE)) testthat::expect_false(any(abs(leaf.dat$Area.smooth.RGRdv[1:3] - c(0.2625059, 0.2263110, 0.2098839)) > 1e-03, na.rm = TRUE)) #identity smoothing scale calculation of AGR and RGR - default calculation of npspline.segments leaf.dat <- splitSplines(leaf.dat, response="Area", x="xDays", spline.type = "PS", lambda = 0.1, deriv=1, suffices.deriv="AGRdv", extra.rate = c(RGRdv = "RGR")) testthat::expect_false(any(abs(leaf.dat$Area.smooth[1:3] - c(16.07077, 18.99996, 22.99637)) > 1e-03, na.rm = TRUE)) testthat::expect_false(any(abs(leaf.dat$Area.smooth.AGRdv[1:3] - c(2.599351, 3.367556, 4.687257)) > 1e-03, na.rm = TRUE)) testthat::expect_false(any(abs(leaf.dat$Area.smooth.RGRdv[1:3] - c(0.1617440, 0.1772402, 0.2038260)) > 1e-03, na.rm = TRUE)) }) cat("#### Test fitSpline using PS with leaf data when there are missing values\n") test_that("leaf_growthPheno", { skip_if_not_installed("growthPheno") skip_on_cran() library(dae) library(ggplot2) library(growthPheno) # A small subset of Exp 270 leaf tracking data data(testSpline) responses <- names(test)[5:ncol(test)] leaf.dat <- test ##Check the contents of the fit.spline object for PS carts <- levels(leaf.dat$Snapshot.ID.Tag) fit <- fitSpline(subset(leaf.dat, Snapshot.ID.Tag == carts), response = "Length.2", response.smoothed = "sLength.2", x="xDays", spline.type = "PS", lambda = 0.1, npspline.segments = 4, na.x.action = "exclude", na.y.action = "allx", deriv=1, suffices.deriv="AGRdv", extra.rate = c(RGRdv = "RGR")) testthat::expect_true(all(c(fit$fit.spline$lambda, fit$fit.spline$uncorrected.fit$lambda) == 0.1)) testthat::expect_true(all(c(fit$fit.spline$npspline.segments, fit$fit.spline$uncorrected.fit$npspline.segments) == 4)) testthat::expect_true(all((c(fit$fit.spline$df, fit$fit.spline$uncorrected.fit$effdim) -3.816562) < 1e-04)) testthat::expect_equal(length(subset(leaf.dat, Snapshot.ID.Tag == carts)$Length.2) - length(fit$fit.spline$x) , 1) testthat::expect_equal(length(subset(leaf.dat, Snapshot.ID.Tag == carts)$Length.2) - length(fit$fit.spline$uncorrected.fit$xgrid) , 1) }) cat("#### Test splitSplines with small example\n") test_that("exampleData_spltSplines", { skip_if_not_installed("growthPheno") skip_on_cran() library(growthPheno) data(exampleData) t <- splitSplines(longi.dat, response="PSA", x="xDAP", smoothing.segments = list(c(28,34), c(35,42)), df = 5) testthat::expect_equal(nrow(t), 280) testthat::expect_equal(ncol(t), 38) testthat::expect_true(all(unique(t$xDAP) == c(28, 30:42))) testthat::expect_false(all(abs(t$PSA.smooth-longi.dat$sPSA) < 1e-04)) testthat::expect_warning( plotLongitudinal(t, x = "xDAP", response = "PSA.smooth", facet.y = "Treatment.1", alpha = 0.75, ggplotFuncs = list(geom_vline(xintercept=35, linetype="longdash", alpha = 0.5, size=0.75, colour = "blue")))) })