test_that("variable() errors informatively", { skip_if_not(check_tf_version()) # bad types expect_snapshot(error = TRUE, variable(upper = NA) ) expect_snapshot(error = TRUE, variable(upper = head) ) expect_snapshot(error = TRUE, variable(lower = NA) ) expect_snapshot(error = TRUE, variable(lower = head) ) # good types, bad values expect_snapshot(error = TRUE, variable(lower = 0:2, upper = 1:2) ) # lower not below upper expect_snapshot(error = TRUE, variable(lower = 1, upper = 1) ) }) test_that("constrained variable constructors error informatively", { skip_if_not(check_tf_version()) expect_snapshot( error = TRUE, cholesky_variable(dim = 2:3) ) expect_snapshot( error = TRUE, cholesky_variable(dim = rep(2, 3)) ) expect_snapshot( error = TRUE, simplex_variable(1) ) expect_snapshot( error = TRUE, simplex_variable(c(3, 1)) ) expect_snapshot( error = TRUE, ordered_variable(1) ) expect_snapshot( error = TRUE, ordered_variable(c(3, 1)) ) }) test_that("variable() with universal bounds can be sampled correctly", { skip_if_not(check_tf_version()) x <- rnorm(3, 0, 10) mu <- variable( lower = 2, upper = 6 ) distribution(x) <- normal(mu, 1) m <- model(mu) draws <- mcmc(m, n_samples = 100, warmup = 1, verbose = FALSE) samples <- as.matrix(draws) above_lower <- sweep(samples, 2, 2, `>=`) below_upper <- sweep(samples, 2, 6, `<=`) expect_true(all(above_lower & below_upper)) }) test_that("variable() with vectorised bounds can be sampled correctly", { skip_if_not(check_tf_version()) x <- rnorm(3, 0, 10) lower <- c(-3, -1, 2) upper <- c(0, 2, 3) mu <- variable( lower = lower, upper = upper ) distribution(x) <- normal(mu, 1) m <- model(mu) draws <- mcmc(m, n_samples = 100, warmup = 1, verbose = FALSE) samples <- as.matrix(draws) above_lower <- sweep(samples, 2, lower, `>=`) below_upper <- sweep(samples, 2, upper, `<=`) expect_true(all(above_lower & below_upper)) }) test_that("cholesky_variable() can be sampled correctly", { skip_if_not(check_tf_version()) n <- 3 u <- cholesky_variable(3) sigma <- chol2symm(u) x <- t(rnorm(n, 0, 1)) distribution(x) <- multivariate_normal(zeros(1, n), sigma) elems <- sigma[upper.tri(sigma)] variances <- diag(sigma) m <- model(variances) draws <- mcmc(m, n_samples = 100, warmup = 100, verbose = FALSE) samples <- as.matrix(draws) variances_positive <- sweep(samples, 2, 0, `>=`) expect_true(all(variances_positive)) }) test_that("cholesky_variable() correlation can be sampled correctly", { skip_if_not(check_tf_version()) n <- 3 u <- cholesky_variable(3, correlation = TRUE) sigma <- chol2symm(u) x <- t(rnorm(n, 0, 1)) distribution(x) <- multivariate_normal(zeros(1, n), sigma) variances <- diag(sigma) correlations <- sigma[upper.tri(sigma, diag = FALSE)] m <- model(variances) variance_draws <- mcmc(m, n_samples = 100, warmup = 100, verbose = FALSE) correlation_draws <- calculate(correlations, values = variance_draws) variance_samples <- as.matrix(variance_draws) correlation_samples <- as.matrix(correlation_draws) variances_one <- abs(variance_samples - 1) < 1e-3 correlations_above_minus_one <- sweep(correlation_samples, 2, -1, `>=`) correlations_below_one <- sweep(correlation_samples, 2, 1, `<=`) expect_true(all(variances_one) & all(correlations_above_minus_one) & all(correlations_below_one)) }) test_that("simplex_variable() can be sampled correctly", { skip_if_not(check_tf_version()) k <- 3 n <- 10 idx <- sample.int(k, n, replace = TRUE) x <- matrix(0, n, k) x[cbind(seq_len(n), idx)] <- 1 prob <- simplex_variable(k) distribution(x) <- categorical(prob, n_realisations = n) m <- model(prob) draws <- mcmc(m, n_samples = 100, warmup = 100, verbose = FALSE) samples <- as.matrix(draws) positive <- samples > 0 sum_to_one <- abs(rowSums(samples) - 1) < 1e-6 expect_true(all(positive) & all(sum_to_one)) }) test_that("ordered_variable() can be sampled correctly", { skip_if_not(check_tf_version()) k <- 3 n <- 10 x <- cbind(rnorm(10), matrix(abs(rnorm(n * (k - 1))), n, k - 1)) x <- t(apply(x, 1, cumsum)) mu <- ordered_variable(k) means <- sweep(ones(n, k), 2, t(mu), "+") distribution(x) <- normal(means, 1) m <- model(mu) draws <- mcmc(m, n_samples = 100, warmup = 100, verbose = FALSE) samples <- as.matrix(draws) increasing <- t(apply(samples, 1, diff)) > 0 expect_true(all(increasing)) })