set.seed(2020 - 02 - 11) test_that("truncated normal has correct densities", { skip_if_not(check_tf_version()) # non truncated normal compare_truncated_distribution(normal, "norm", parameters = list( mean = -1, sd = 2.4 ), truncation = c(-Inf, Inf) ) # positive truncated compare_truncated_distribution(normal, "norm", parameters = list( mean = -1, sd = 2.4 ), truncation = c(1, Inf) ) # negative truncated compare_truncated_distribution(normal, "norm", parameters = list( mean = -1, sd = 2.4 ), truncation = c(-Inf, 0) ) # fully truncated compare_truncated_distribution(normal, "norm", parameters = list( mean = -1, sd = 2.4 ), truncation = c(-2, -1) ) }) test_that("truncated lognormal has correct densities", { skip_if_not(check_tf_version()) # non truncated compare_truncated_distribution(lognormal, "lnorm", parameters = list( meanlog = -1, sdlog = 2.4 ), truncation = c(0, Inf) ) # positive truncated compare_truncated_distribution(lognormal, "lnorm", parameters = list( meanlog = -1, sdlog = 2.4 ), truncation = c(1, Inf) ) # negative truncated compare_truncated_distribution(lognormal, "lnorm", parameters = list( meanlog = -1, sdlog = 2.4 ), truncation = c(0, 2) ) # fully truncated compare_truncated_distribution(lognormal, "lnorm", parameters = list( meanlog = -1, sdlog = 2.4 ), truncation = c(2, 4) ) }) test_that("truncated gamma has correct densities", { skip_if_not(check_tf_version()) # non truncated compare_truncated_distribution(gamma, "gamma", parameters = list( shape = 2, rate = 2 ), truncation = c(0, Inf) ) # positive truncated compare_truncated_distribution(gamma, "gamma", parameters = list( shape = 2, rate = 2 ), truncation = c(1, Inf) ) # negative truncated compare_truncated_distribution(gamma, "gamma", parameters = list( shape = 2, rate = 2 ), truncation = c(0, 2) ) # fully truncated compare_truncated_distribution(gamma, "gamma", parameters = list( shape = 2, rate = 2 ), truncation = c(1, 2) ) }) test_that("truncated inverse gamma has correct densities", { skip_if_not(check_tf_version()) # apparently testthat can't see these, trying out global assign to see if that # makes them visible dinvgamma <<- extraDistr::dinvgamma qinvgamma <<- extraDistr::qinvgamma pinvgamma <<- extraDistr::pinvgamma # non truncated compare_truncated_distribution(inverse_gamma, "invgamma", parameters = list( alpha = 2, beta = 1.2 ), truncation = c(0, Inf) ) # positive truncated compare_truncated_distribution(inverse_gamma, "invgamma", parameters = list( alpha = 2, beta = 1.2 ), truncation = c(1, Inf) ) # negative truncated compare_truncated_distribution(inverse_gamma, "invgamma", parameters = list( alpha = 2, beta = 1.2 ), truncation = c(0, 2) ) # fully truncated compare_truncated_distribution(inverse_gamma, "invgamma", parameters = list( alpha = 2, beta = 1.2 ), truncation = c(1, 2) ) }) test_that("truncated weibull has correct densities", { skip_if_not(check_tf_version()) # non truncated compare_truncated_distribution(weibull, "weibull", parameters = list( shape = 2, scale = 1.2 ), truncation = c(0, Inf) ) # positive truncated compare_truncated_distribution(weibull, "weibull", parameters = list( shape = 2, scale = 1.2 ), truncation = c(1, Inf) ) # negative truncated compare_truncated_distribution(weibull, "weibull", parameters = list( shape = 2, scale = 1.2 ), truncation = c(0, 2) ) # fully truncated compare_truncated_distribution(weibull, "weibull", parameters = list( shape = 2, scale = 1.2 ), truncation = c(1, 2) ) }) test_that("truncated exponential has correct densities", { skip_if_not(check_tf_version()) # non truncated compare_truncated_distribution(exponential, "exp", parameters = list(rate = 2), truncation = c(0, Inf) ) # positive truncated compare_truncated_distribution(exponential, "exp", parameters = list(rate = 2), truncation = c(1, Inf) ) # negative truncated compare_truncated_distribution(exponential, "exp", parameters = list(rate = 2), truncation = c(0, 2) ) # fully truncated compare_truncated_distribution(exponential, "exp", parameters = list(rate = 2), truncation = c(1, 2) ) }) test_that("truncated pareto has correct densities", { skip_if_not(check_tf_version()) # mock up pareto to have differently named parameters (a and b are use for the # truncation) # # # mock up pareto to have differently named parameters (a and b are use for the # # truncation) preto <<- function(a_, b_, dim, truncation) pareto(a_, b_, dim, truncation) dpreto <<- function(x, a_, b_) extraDistr::dpareto(x, a_, b_) ppreto <<- function(q, a_, b_) extraDistr::ppareto(q, a_, b_) qpreto <<- function(p, a_, b_) extraDistr::qpareto(p, a_, b_) # non truncated compare_truncated_distribution(preto, "preto", parameters = list( a_ = 1.9, b_ = 4.3 ), truncation = c(0, Inf) ) # positive truncated compare_truncated_distribution(preto, "preto", parameters = list( a_ = 1.9, b_ = 4.3 ), truncation = c(7.2, Inf) ) # negative truncated compare_truncated_distribution(preto, "preto", parameters = list( a_ = 1.9, b_ = 4.3 ), truncation = c(0, 21.3) ) # fully truncated compare_truncated_distribution(preto, "preto", parameters = list( a_ = 1.9, b_ = 4.3 ), truncation = c(7.2, 21.3) ) }) test_that("truncated student has correct densities", { skip_if_not(check_tf_version()) dstudent <<- extraDistr::dlst qstudent <<- extraDistr::qlst pstudent <<- extraDistr::plst # non truncated compare_truncated_distribution(student, "student", parameters = list( df = 5, mu = 2, sigma = 3.4 ), truncation = c(-Inf, Inf) ) # positive truncated compare_truncated_distribution(student, "student", parameters = list( df = 5, mu = 2, sigma = 3.4 ), truncation = c(1, Inf) ) # negative truncated compare_truncated_distribution(student, "student", parameters = list( df = 5, mu = 2, sigma = 3.4 ), truncation = c(-Inf, 2) ) # fully truncated compare_truncated_distribution(student, "student", parameters = list( df = 5, mu = 2, sigma = 3.4 ), truncation = c(1, 2) ) }) test_that("truncated laplace has correct densities", { skip_if_not(check_tf_version()) dlaplace <<- extraDistr::dlaplace qlaplace <<- extraDistr::qlaplace plaplace <<- extraDistr::plaplace # non truncated compare_truncated_distribution(laplace, "laplace", parameters = list( mu = 2, sigma = 3.4 ), truncation = c(-Inf, Inf) ) # positive truncated compare_truncated_distribution(laplace, "laplace", parameters = list( mu = 2, sigma = 3.4 ), truncation = c(1, Inf) ) # negative truncated compare_truncated_distribution(laplace, "laplace", parameters = list( mu = 2, sigma = 3.4 ), truncation = c(-Inf, 2) ) # fully truncated compare_truncated_distribution(laplace, "laplace", parameters = list( mu = 2, sigma = 3.4 ), truncation = c(1, 2) ) }) test_that("truncated beta has correct densities", { skip_if_not(check_tf_version()) # non truncated compare_truncated_distribution(beta, "beta", parameters = list( shape1 = 2.1, shape2 = 2.3 ), truncation = c(0, 1) ) # positive truncated compare_truncated_distribution(beta, "beta", parameters = list( shape1 = 2.1, shape2 = 2.3 ), truncation = c(0.1, 1) ) # negative truncated compare_truncated_distribution(beta, "beta", parameters = list( shape1 = 2.1, shape2 = 2.3 ), truncation = c(0, 0.2) ) # fully truncated compare_truncated_distribution(beta, "beta", parameters = list( shape1 = 2.1, shape2 = 2.3 ), truncation = c(0.1, 0.2) ) }) test_that("truncated cauchy has correct densities", { skip_if_not(check_tf_version()) # non truncated compare_truncated_distribution(cauchy, "cauchy", parameters = list( location = -1.3, scale = 2.3 ), truncation = c(-Inf, Inf) ) # positive truncated compare_truncated_distribution(cauchy, "cauchy", parameters = list( location = -1.3, scale = 2.3 ), truncation = c(0.1, Inf) ) # negative truncated compare_truncated_distribution(cauchy, "cauchy", parameters = list( location = -1.3, scale = 2.3 ), truncation = c(-Inf, 0.2) ) # fully truncated compare_truncated_distribution(cauchy, "cauchy", parameters = list( location = -1.3, scale = 2.3 ), truncation = c(0.1, 0.2) ) }) test_that("truncated logistic has correct densities", { skip_if_not(check_tf_version()) # non truncated compare_truncated_distribution(logistic, "logis", parameters = list( location = -1.3, scale = 2.3 ), truncation = c(-Inf, Inf) ) # positive truncated compare_truncated_distribution(logistic, "logis", parameters = list( location = -1.3, scale = 2.3 ), truncation = c(0.1, Inf) ) # negative truncated compare_truncated_distribution(logistic, "logis", parameters = list( location = -1.3, scale = 2.3 ), truncation = c(-Inf, 0.2) ) # fully truncated compare_truncated_distribution(logistic, "logis", parameters = list( location = -1.3, scale = 2.3 ), truncation = c(0.1, 0.2) ) }) test_that("truncated f has correct densities", { skip_if_not(check_tf_version()) # non truncated compare_truncated_distribution(f, "f", parameters = list( df1 = 1.3, df2 = 4.7 ), truncation = c(0, Inf) ) # positive truncated compare_truncated_distribution(f, "f", parameters = list( df1 = 1.3, df2 = 4.7 ), truncation = c(0.1, Inf) ) # negative truncated compare_truncated_distribution(f, "f", parameters = list( df1 = 1.3, df2 = 4.7 ), truncation = c(0, 0.2) ) # fully truncated compare_truncated_distribution(f, "f", parameters = list( df1 = 1.3, df2 = 4.7 ), truncation = c(0.1, 0.2) ) }) test_that("truncated chi squared has correct densities", { skip_if_not(check_tf_version()) # non truncated compare_truncated_distribution(chi_squared, "chisq", parameters = list(df = 9.3), truncation = c(0, Inf) ) # positive truncated compare_truncated_distribution(chi_squared, "chisq", parameters = list(df = 9.3), truncation = c(0.1, Inf) ) # negative truncated compare_truncated_distribution(chi_squared, "chisq", parameters = list(df = 9.3), truncation = c(0, 0.2) ) # fully truncated compare_truncated_distribution(chi_squared, "chisq", parameters = list(df = 9.3), truncation = c(0.1, 0.2) ) }) test_that("bad truncations error", { skip_if_not(check_tf_version()) expect_snapshot(error = TRUE, lognormal(0, 1, truncation = c(-1, Inf)) ) expect_snapshot(error = TRUE, beta(1, 1, truncation = c(-1, 2)) ) })