test_that("normal distribution has correct density", { skip_if_not(check_tf_version()) compare_distribution( greta::normal, stats::dnorm, parameters = list(mean = -2, sd = 3), x = rnorm(100, -2, 3) ) }) test_that("multidimensional normal distribution has correct density", { skip_if_not(check_tf_version()) compare_distribution( greta::normal, stats::dnorm, parameters = list(mean = -2, sd = 3), x = array( rnorm(100, -2, 3), dim = c(10, 2, 5) ), dim = c(10, 2, 5) ) }) test_that("uniform distribution has correct density", { skip_if_not(check_tf_version()) compare_distribution( greta::uniform, stats::dunif, parameters = list(min = -2.1, max = -1.2), x = runif(100, -2.1, -1.2) ) }) test_that("lognormal distribution has correct density", { skip_if_not(check_tf_version()) compare_distribution( greta::lognormal, stats::dlnorm, parameters = list(meanlog = 1, sdlog = 3), x = rlnorm(100, 1, 3) ) }) test_that("bernoulli distribution has correct density", { skip_if_not(check_tf_version()) compare_distribution( greta::bernoulli, extraDistr::dbern, parameters = list(prob = 0.3), x = rbinom(100, 1, 0.3) ) }) test_that("binomial distribution has correct density", { skip_if_not(check_tf_version()) compare_distribution( greta::binomial, stats::dbinom, parameters = list(size = 10, prob = 0.8), x = rbinom(100, 10, 0.8) ) }) test_that("beta-binomial distribution has correct density", { skip_if_not(check_tf_version()) compare_distribution( greta::beta_binomial, extraDistr::dbbinom, parameters = list( size = 10, alpha = 0.8, beta = 1.2 ), x = extraDistr::rbbinom(100, 10, 0.8, 1.2) ) }) test_that("negative binomial distribution has correct density", { skip_if_not(check_tf_version()) compare_distribution( greta::negative_binomial, stats::dnbinom, parameters = list(size = 3.3, prob = 0.2), x = rnbinom(100, 3.3, 0.2) ) }) test_that("hypergeometric distribution has correct density", { skip_if_not(check_tf_version()) compare_distribution( greta::hypergeometric, stats::dhyper, parameters = list(m = 11, n = 8, k = 5), x = rhyper(100, 11, 8, 5) ) }) test_that("poisson distribution has correct density", { skip_if_not(check_tf_version()) compare_distribution( greta::poisson, stats::dpois, parameters = list(lambda = 17.2), x = rpois(100, 17.2) ) }) test_that("gamma distribution has correct density", { skip_if_not(check_tf_version()) compare_distribution( greta::gamma, stats::dgamma, parameters = list(shape = 1.2, rate = 2.3), x = rgamma(100, 1.2, 2.3) ) }) test_that("inverse gamma distribution has correct density", { skip_if_not(check_tf_version()) compare_distribution( greta::inverse_gamma, extraDistr::dinvgamma, parameters = list(alpha = 1.2, beta = 0.9), x = extraDistr::rinvgamma(100, 1.2, 0.9) ) }) test_that("weibull distribution has correct density", { skip_if_not(check_tf_version()) compare_distribution( greta::weibull, dweibull, parameters = list( shape = 1.2, scale = 0.9 ), x = rweibull(100, 1.2, 0.9) ) }) test_that("exponential distribution has correct density", { skip_if_not(check_tf_version()) compare_distribution( greta::exponential, stats::dexp, parameters = list(rate = 1.9), x = rexp(100, 1.9) ) }) test_that("pareto distribution has correct density", { skip_if_not(check_tf_version()) compare_distribution( greta::pareto, extraDistr::dpareto, parameters = list(a = 1.9, b = 2.3), x = extraDistr::rpareto(100, 1.9, 2.3) ) }) test_that("student distribution has correct density", { skip_if_not(check_tf_version()) dstudent <- extraDistr::dlst compare_distribution( greta::student, dstudent, parameters = list( df = 3, mu = -0.9, sigma = 2 ), x = rnorm(100, -0.9, 2) ) }) test_that("laplace distribution has correct density", { skip_if_not(check_tf_version()) compare_distribution( greta::laplace, extraDistr::dlaplace, parameters = list(mu = -0.9, sigma = 2), x = extraDistr::rlaplace(100, -0.9, 2) ) }) test_that("beta distribution has correct density", { skip_if_not(check_tf_version()) compare_distribution( greta::beta, stats::dbeta, parameters = list( shape1 = 2.3, shape2 = 3.4 ), x = rbeta(100, 2.3, 3.4) ) }) test_that("cauchy distribution has correct density", { skip_if_not(check_tf_version()) compare_distribution( greta::cauchy, stats::dcauchy, parameters = list( location = -1.3, scale = 3.4 ), x = rcauchy(100, -1.3, 3.4) ) }) test_that("logistic distribution has correct density", { skip_if_not(check_tf_version()) compare_distribution( greta::logistic, stats::dlogis, parameters = list( location = -1.3, scale = 2.1 ), x = rlogis(100, -1.3, 2.1) ) }) test_that("f distribution has correct density", { skip_if_not(check_tf_version()) compare_distribution( greta::f, df, parameters = list(df1 = 5.9, df2 = 2), x = rf(100, 5.9, 2) ) }) test_that("chi squared distribution has correct density", { skip_if_not(check_tf_version()) compare_distribution( greta::chi_squared, stats::dchisq, parameters = list(df = 9.3), x = rchisq(100, 9.3) ) }) test_that("multivariate normal distribution has correct density", { skip_if_not(check_tf_version()) # parameters to test m <- 5 mn <- t(rnorm(m)) sig <- rWishart(1, m + 1, diag(m))[, , 1] # function converting Sigma to sigma dmvnorm2 <- function(x, mean, Sigma, log = FALSE) { # nolint mvtnorm::dmvnorm(x = x, mean = mean, sigma = Sigma, log = log) } compare_distribution( greta::multivariate_normal, dmvnorm2, parameters = list(mean = mn, Sigma = sig), x = mvtnorm::rmvnorm(100, mn, sig), multivariate = TRUE ) }) test_that("Wishart and LKJ distributions have correct density", { skip_if_not(check_tf_version()) # NOTE: we no longer have unit tests for the densities of the Wishart and LKJ # distributions, because the greta implementation uses the distribution over # hcolesky factors, combined with the log det jacobian for change of support # from the cholesky factor to the symmetric matrix. This distribution is # non-standard, so there is no reference distribution in R against which to # compare the log probs. Instead, the implied densities for these # distributions are tested using integration tests with the MCMC sampler, in # test_posteriors_wishart.R and test_posteriors_lkj.R. skip() }) test_that("multinomial distribution has correct density", { skip_if_not(check_tf_version()) # parameters to test m <- 5 prob <- t(runif(m)) size <- 5 # vectorise R's density function dmultinom_vec <- function(x, size, prob) { apply(x, 1, stats::dmultinom, size = size, prob = prob) } compare_distribution( greta::multinomial, dmultinom_vec, parameters = list( size = size, prob = prob ), x = t(rmultinom(100, size, prob)), multivariate = TRUE ) }) test_that("categorical distribution has correct density", { skip_if_not(check_tf_version()) # parameters to test m <- 5 prob <- t(runif(m)) # vectorise R's density function dcategorical_vec <- function(x, prob) { apply(x, 1, stats::dmultinom, size = 1, prob = prob) } compare_distribution( greta::categorical, dcategorical_vec, parameters = list(prob = prob), x = t(rmultinom(100, 1, prob)), multivariate = TRUE ) }) test_that("dirichlet distribution has correct density", { skip_if_not(check_tf_version()) # parameters to test m <- 5 alpha <- t(runif(m)) compare_distribution( greta_fun = greta::dirichlet, r_fun = extraDistr::ddirichlet, parameters = list(alpha = alpha), x = extraDistr::rdirichlet(100, alpha), multivariate = TRUE ) }) test_that("dirichlet-multinomial distribution has correct density", { skip_if_not(check_tf_version()) # parameters to test size <- 10 m <- 5 alpha <- t(runif(m)) compare_distribution( greta::dirichlet_multinomial, extraDistr::ddirmnom, parameters = list( size = size, alpha = alpha ), x = extraDistr::rdirmnom( 100, size, alpha ), multivariate = TRUE ) }) test_that("scalar-valued distributions can be defined in models", { skip_if_not(check_tf_version()) x <- randn(5) y <- round(randu(5)) p <- iprobit(normal(0, 1)) # variable (need to define a likelihood) a <- variable() distribution(x) <- normal(a, 1) expect_ok(model(a)) # univariate discrete distributions distribution(y) <- bernoulli(p) expect_ok(model(p)) distribution(y) <- binomial(1, p) expect_ok(model(p)) distribution(y) <- beta_binomial(1, p, 0.2) expect_ok(model(p)) distribution(y) <- negative_binomial(1, p) expect_ok(model(p)) distribution(y) <- hypergeometric(5, 5, p) expect_ok(model(p)) distribution(y) <- poisson(p) expect_ok(model(p)) # multivariate discrete distributions y <- extraDistr::rmnom(1, size = 4, prob = runif(3)) p <- iprobit(normal(0, 1, dim = 3)) distribution(y) <- multinomial(4, t(p)) expect_ok(model(p)) y <- extraDistr::rmnom(1, size = 1, prob = runif(3)) p <- iprobit(normal(0, 1, dim = 3)) distribution(y) <- categorical(t(p)) expect_ok(model(p)) y <- extraDistr::rmnom(1, size = 4, prob = runif(3)) alpha <- lognormal(0, 1, dim = 3) distribution(y) <- dirichlet_multinomial(4, t(alpha)) expect_ok(model(alpha)) # univariate continuous distributions expect_ok(model(normal(-2, 3))) expect_ok(model(student(5.6, -2, 2.3))) expect_ok(model(laplace(-1.2, 1.1))) expect_ok(model(cauchy(-1.2, 1.1))) expect_ok(model(logistic(-1.2, 1.1))) expect_ok(model(lognormal(1.2, 0.2))) expect_ok(model(gamma(0.9, 1.3))) expect_ok(model(exponential(6.3))) expect_ok(model(beta(6.3, 5.9))) expect_ok(model(inverse_gamma(0.9, 1.3))) expect_ok(model(weibull(2, 1.1))) expect_ok(model(pareto(2.4, 1.5))) expect_ok(model(chi_squared(4.3))) expect_ok(model(f(24.3, 2.4))) expect_ok(model(uniform(-13, 2.4))) # multivariate continuous distributions sig <- rWishart(1, 4, diag(3))[, , 1] expect_ok(model(multivariate_normal(t(rnorm(3)), sig))) expect_ok(model(wishart(4, sig))) expect_ok(model(lkj_correlation(5, dimension = 3))) expect_ok(model(dirichlet(t(runif(3))))) }) test_that("array-valued distributions can be defined in models", { skip_if_not(check_tf_version()) dim <- c(5, 2) x <- randn(5, 2) y <- round(randu(5, 2)) # variable (need to define a likelihood) a <- variable(dim = dim) distribution(x) <- normal(a, 1) expect_ok(model(a)) # univariate discrete distributions p <- iprobit(normal(0, 1, dim = dim)) distribution(y) <- bernoulli(p) expect_ok(model(p)) p <- iprobit(normal(0, 1, dim = dim)) distribution(y) <- binomial(1, p) expect_ok(model(p)) p <- iprobit(normal(0, 1, dim = dim)) distribution(y) <- beta_binomial(1, p, 0.2) expect_ok(model(p)) p <- iprobit(normal(0, 1, dim = dim)) distribution(y) <- negative_binomial(1, p) expect_ok(model(p)) p <- iprobit(normal(0, 1, dim = dim)) distribution(y) <- hypergeometric(10, 5, p) expect_ok(model(p)) p <- iprobit(normal(0, 1, dim = dim)) distribution(y) <- poisson(p) expect_ok(model(p)) # multivariate discrete distributions y <- extraDistr::rmnom(5, size = 4, prob = runif(3)) p <- iprobit(normal(0, 1, dim = 3)) distribution(y) <- multinomial(4, t(p), n_realisations = 5) expect_ok(model(p)) y <- extraDistr::rmnom(5, size = 1, prob = runif(3)) p <- iprobit(normal(0, 1, dim = 3)) distribution(y) <- categorical(t(p), n_realisations = 5) expect_ok(model(p)) y <- extraDistr::rmnom(5, size = 4, prob = runif(3)) alpha <- lognormal(0, 1, dim = 3) distribution(y) <- dirichlet_multinomial(4, t(alpha), n_realisations = 5) expect_ok(model(alpha)) # univariate continuous distributions expect_ok(model(normal(-2, 3, dim = dim))) expect_ok(model(student(5.6, -2, 2.3, dim = dim))) expect_ok(model(laplace(-1.2, 1.1, dim = dim))) expect_ok(model(cauchy(-1.2, 1.1, dim = dim))) expect_ok(model(logistic(-1.2, 1.1, dim = dim))) expect_ok(model(lognormal(1.2, 0.2, dim = dim))) expect_ok(model(gamma(0.9, 1.3, dim = dim))) expect_ok(model(exponential(6.3, dim = dim))) expect_ok(model(beta(6.3, 5.9, dim = dim))) expect_ok(model(uniform(-13, 2.4, dim = dim))) expect_ok(model(inverse_gamma(0.9, 1.3, dim = dim))) expect_ok(model(weibull(2, 1.1, dim = dim))) expect_ok(model(pareto(2.4, 1.5, dim = dim))) expect_ok(model(chi_squared(4.3, dim = dim))) expect_ok(model(f(24.3, 2.4, dim = dim))) # multivariate continuous distributions sig <- rWishart(1, 4, diag(3))[, , 1] expect_ok( model(multivariate_normal(t(rnorm(3)), sig, n_realisations = dim[1])) ) expect_ok(model(dirichlet(t(runif(3)), n_realisations = dim[1]))) expect_ok(model(wishart(4, sig))) expect_ok(model(lkj_correlation(3, dimension = dim[1]))) }) test_that("distributions can be sampled from by MCMC", { skip_if_not(check_tf_version()) x <- randn(100) y <- round(randu(100)) # variable (with a density) a <- variable() distribution(x) <- normal(a, 1) sample_distribution(a) b <- variable(lower = -1) distribution(x) <- normal(b, 1) sample_distribution(b) c <- variable(upper = -2) distribution(x) <- normal(c, 1) sample_distribution(c) d <- variable(lower = 1.2, upper = 1.3) distribution(x) <- normal(d, 1) sample_distribution(d) # univariate discrete p <- iprobit(normal(0, 1, dim = 100)) distribution(y) <- bernoulli(p) sample_distribution(p) p <- iprobit(normal(0, 1, dim = 100)) distribution(y) <- binomial(1, p) sample_distribution(p) p <- iprobit(normal(0, 1, dim = 100)) distribution(y) <- negative_binomial(1, p) sample_distribution(p) p <- iprobit(normal(0, 1, dim = 100)) distribution(y) <- hypergeometric(10, 5, p) sample_distribution(p) p <- iprobit(normal(0, 1, dim = 100)) distribution(y) <- poisson(p) sample_distribution(p) p <- iprobit(normal(0, 1, dim = 100)) distribution(y) <- beta_binomial(1, p, 0.3) sample_distribution(p) # multivariate discrete y <- extraDistr::rmnom(5, size = 4, prob = runif(3)) p <- uniform(0, 1, dim = 3) distribution(y) <- multinomial(4, t(p), n_realisations = 5) sample_distribution(p) y <- extraDistr::rmnom(5, size = 1, prob = runif(3)) p <- iprobit(normal(0, 1, dim = 3)) distribution(y) <- categorical(t(p), n_realisations = 5) sample_distribution(p) y <- extraDistr::rmnom(5, size = 4, prob = runif(3)) alpha <- lognormal(0, 1, dim = 3) distribution(y) <- dirichlet_multinomial(4, t(alpha), n_realisations = 5) sample_distribution(alpha) # univariate continuous sample_distribution(normal(-2, 3)) sample_distribution(student(5.6, -2, 2.3)) sample_distribution(laplace(-1.2, 1.1)) sample_distribution(cauchy(-1.2, 1.1)) sample_distribution(logistic(-1.2, 1.1)) sample_distribution(lognormal(1.2, 0.2), lower = 0) sample_distribution(gamma(0.9, 1.3), lower = 0) sample_distribution(exponential(6.3), lower = 0) sample_distribution(beta(6.3, 5.9), lower = 0, upper = 1) sample_distribution(inverse_gamma(0.9, 1.3), lower = 0) sample_distribution(weibull(2, 1.1), lower = 0) sample_distribution(pareto(2.4, 0.1), lower = 0.1) sample_distribution(chi_squared(4.3), lower = 0) sample_distribution(f(24.3, 2.4), lower = 0) sample_distribution(uniform(-13, 2.4), lower = -13, upper = 2.4) # multivariate continuous sig <- rWishart(1, 4, diag(3))[, , 1] sample_distribution(multivariate_normal(t(rnorm(3)), sig)) sample_distribution(wishart(10L, Sig = diag(2)), warmup = 0) sample_distribution(lkj_correlation(4, dimension = 3)) sample_distribution(dirichlet(t(runif(3)))) }) test_that("uniform distribution errors informatively", { skip_if_not(check_tf_version()) # skip_on_ci() # bad types expect_snapshot( error = TRUE, uniform(min = 0, max = NA) ) expect_snapshot( error = TRUE, uniform(min = 0, max = head) ) expect_snapshot( error = TRUE, uniform(min = 1:3, max = 5) ) # good types, bad values expect_snapshot( error = TRUE, uniform(min = -Inf, max = Inf) ) # lower not below upper expect_snapshot( error = TRUE, uniform(min = 1, max = 1) ) }) test_that("poisson() and binomial() error informatively in glm", { # skip_on_ci() skip_if_not(check_tf_version()) # if passed as an object expect_snapshot(error = TRUE, glm(1 ~ 1, family = poisson) ) expect_snapshot(error = TRUE, glm(1 ~ 1, family = binomial) ) # if executed alone expect_snapshot(error = TRUE, glm(1 ~ 1, family = poisson()) ) # if given a link expect_snapshot(error = TRUE, glm(1 ~ 1, family = poisson("sqrt")) ) }) test_that("wishart distribution errors informatively", { skip_if_not(check_tf_version()) a <- randn(3, 3) b <- randn(3, 3, 3) c <- randn(3, 2) expect_true(inherits( wishart(3, a), "greta_array" )) expect_snapshot( error = TRUE, wishart(3, b) ) expect_snapshot( error = TRUE, wishart(3, c) ) }) test_that("lkj_correlation distribution errors informatively", { skip_if_not(check_tf_version()) dim <- 3 expect_true(inherits( lkj_correlation(3, dim), "greta_array" )) expect_snapshot(error = TRUE, lkj_correlation(-1, dim) ) expect_snapshot(error = TRUE, lkj_correlation(c(3, 3), dim) ) expect_snapshot(error = TRUE, lkj_correlation(uniform(0, 1, dim = 2), dim) ) expect_snapshot(error = TRUE, lkj_correlation(4, dimension = -1) ) expect_snapshot(error = TRUE, lkj_correlation(4, dim = c(3, 3)) ) expect_snapshot(error = TRUE, lkj_correlation(4, dim = NA) ) }) test_that("multivariate_normal distribution errors informatively", { skip_if_not(check_tf_version()) m_a <- randn(1, 3) m_b <- randn(2, 3) m_c <- randn(3) m_d <- randn(3, 1) a <- randn(3, 3) b <- randn(3, 3, 3) c <- randn(3, 2) d <- randn(4, 4) # good means expect_true(inherits( multivariate_normal(m_a, a), "greta_array" )) expect_true(inherits( multivariate_normal(m_b, a), "greta_array" )) # bad means expect_snapshot(error = TRUE, multivariate_normal(m_c, a) ) expect_snapshot(error = TRUE, multivariate_normal(m_d, a) ) # good sigmas expect_true(inherits( multivariate_normal(m_a, a), "greta_array" )) # bad sigmas expect_snapshot(error = TRUE, multivariate_normal(m_a, b) ) expect_snapshot(error = TRUE, multivariate_normal(m_a, c) ) # mismatched parameters expect_snapshot(error = TRUE, multivariate_normal(m_a, d) ) # scalars expect_snapshot(error = TRUE, multivariate_normal(0, 1) ) # bad n_realisations expect_snapshot(error = TRUE, multivariate_normal(m_a, a, n_realisations = -1) ) expect_snapshot(error = TRUE, multivariate_normal(m_a, a, n_realisations = c(1, 3)) ) # bad dimension expect_snapshot(error = TRUE, multivariate_normal(m_a, a, dimension = -1) ) expect_snapshot(error = TRUE, multivariate_normal(m_a, a, dimension = c(1, 3)) ) }) test_that("multinomial distribution errors informatively", { skip_if_not(check_tf_version()) p_a <- randu(1, 3) p_b <- randu(2, 3) # same size & probs expect_true(inherits( multinomial(size = 10, p_a), "greta_array" )) expect_true(inherits( multinomial(size = 1:2, p_b), "greta_array" )) # n_realisations from prob expect_true(inherits( multinomial(10, p_b), "greta_array" )) # n_realisations from size expect_true(inherits( multinomial(c(1, 2), p_a), "greta_array" )) # scalars expect_snapshot(error = TRUE, multinomial(c(1), 1) ) # bad n_realisations expect_snapshot(error = TRUE, multinomial(10, p_a, n_realisations = -1) ) expect_snapshot(error = TRUE, multinomial(10, p_a, n_realisations = c(1, 3)) ) # bad dimension expect_snapshot(error = TRUE, multinomial(10, p_a, dimension = -1) ) expect_snapshot(error = TRUE, multinomial(10, p_a, dimension = c(1, 3)) ) }) test_that("categorical distribution errors informatively", { skip_if_not(check_tf_version()) p_a <- randu(1, 3) p_b <- randu(2, 3) # good probs expect_true(inherits( categorical(p_a), "greta_array" )) expect_true(inherits( categorical(p_b), "greta_array" )) # scalars expect_snapshot(error = TRUE, categorical(1), ) # bad n_realisations expect_snapshot(error = TRUE, categorical(p_a, n_realisations = -1) ) expect_snapshot(error = TRUE, categorical(p_a, n_realisations = c(1, 3)) ) # bad dimension expect_snapshot(error = TRUE, categorical(p_a, dimension = -1) ) expect_snapshot(error = TRUE, categorical(p_a, dimension = c(1, 3)) ) }) test_that("dirichlet distribution errors informatively", { skip_if_not(check_tf_version()) alpha_a <- randu(1, 3) alpha_b <- randu(2, 3) # good alpha expect_true(inherits( dirichlet(alpha_a), "greta_array" )) expect_true(inherits( dirichlet(alpha_b), "greta_array" )) # scalars expect_snapshot(error = TRUE, dirichlet(1), ) # bad n_realisations expect_snapshot(error = TRUE, dirichlet(alpha_a, n_realisations = -1) ) expect_snapshot(error = TRUE, dirichlet(alpha_a, n_realisations = c(1, 3)) ) # bad dimension expect_snapshot(error = TRUE, dirichlet(alpha_a, dimension = -1) ) expect_snapshot(error = TRUE, dirichlet(alpha_a, dimension = c(1, 3)) ) }) test_that("dirichlet values sum to one", { skip_if_not(check_tf_version()) alpha <- uniform(0, 10, dim = c(1, 5)) x <- dirichlet(alpha) m <- model(x) draws <- mcmc(m, n_samples = 100, warmup = 100, verbose = FALSE) sums <- rowSums(as.matrix(draws)) compare_op(sums, 1) }) test_that("dirichlet-multinomial distribution errors informatively", { skip_if_not(check_tf_version()) alpha_a <- randu(1, 3) alpha_b <- randu(2, 3) # same size & probs expect_true(inherits( dirichlet_multinomial(size = 10, alpha_a), "greta_array" )) expect_true(inherits( dirichlet_multinomial(size = 1:2, alpha_b), "greta_array" )) # n_realisations from alpha expect_true(inherits( dirichlet_multinomial(10, alpha_b), "greta_array" )) # n_realisations from size expect_true(inherits( dirichlet_multinomial(c(1, 2), alpha_a), "greta_array" )) # scalars expect_snapshot(error = TRUE, dirichlet_multinomial(c(1), 1) ) # bad n_realisations expect_snapshot(error = TRUE, dirichlet_multinomial(10, alpha_a, n_realisations = -1) ) expect_snapshot(error = TRUE, dirichlet_multinomial(10, alpha_a, n_realisations = c(1, 3)) ) # bad dimension expect_snapshot(error = TRUE, dirichlet_multinomial(10, alpha_a, dimension = -1) ) expect_snapshot(error = TRUE, dirichlet_multinomial(10, alpha_a, dimension = c(1, 3)) ) }) test_that("multivariate distribs with matrix params can be sampled from", { skip_if_not(check_tf_version()) n <- 10 k <- 3 # multivariate normal x <- randn(n, k) mu <- normal(0, 1, dim = c(n, k)) distribution(x) <- multivariate_normal(mu, diag(k)) m <- model(mu) expect_ok(draws <- mcmc(m, warmup = 0, n_samples = 5, verbose = FALSE)) # multinomial size <- 5 x <- t(rmultinom(n, size, runif(k))) p <- uniform(0, 1, dim = c(n, k)) distribution(x) <- multinomial(size, p) m <- model(p) expect_ok(draws <- mcmc(m, warmup = 0, n_samples = 5, verbose = FALSE)) # categorical x <- t(rmultinom(n, 1, runif(k))) p <- uniform(0, 1, dim = c(n, k)) distribution(x) <- categorical(p) m <- model(p) expect_ok(draws <- mcmc(m, warmup = 0, n_samples = 5, verbose = FALSE)) # dirichlet x <- randu(n, k) x <- sweep(x, 1, rowSums(x), "/") a <- normal(0, 1, dim = c(n, k)) distribution(x) <- dirichlet(a) m <- model(a) expect_ok(draws <- mcmc(m, warmup = 0, n_samples = 5, verbose = FALSE)) # dirichlet multinomial size <- 5 x <- t(rmultinom(n, size, runif(k))) a <- normal(0, 1, dim = c(n, k)) distribution(x) <- dirichlet_multinomial(size, a) m <- model(a) expect_ok(draws <- mcmc(m, warmup = 0, n_samples = 5, verbose = FALSE)) })