## Tests for models in the HGAM paper ## load packages library("testthat") library("gratia") library("mgcv") library("ggplot2") library("datasets") ## Need a local wrapper to allow conditional use of vdiffr `expect_doppelganger` <- function(title, fig, ...) { testthat::skip_if_not_installed("vdiffr") vdiffr::expect_doppelganger(title, fig, ...) } ## data load and prep data(CO2, package = "datasets") CO2 <- transform(CO2, Plant_uo = factor(Plant, ordered = FALSE)) data(bird_move, package = "gratia") data(zooplankton, package = "gratia") zooplankton <- transform(zooplankton, year_f = factor(year)) ## use several threads to speed up some fits ctrl <- gam.control(nthreads = 3) ## the first training and testing data set will be used to compare dynamics of ## plankton communities in Lake Mendota zoo_train <- subset(zooplankton, year%%2==0 & lake=="Mendota") zoo_test <- subset(zooplankton, year%%2==1 & lake=="Mendota") ## The second training and testing set will compare Daphnia mendotae dynamics ## among four lakes daphnia_train <- subset(zooplankton, year%%2==0 & taxon=="D. mendotae") daphnia_test <- subset(zooplankton, year%%2==1 & taxon=="D. mendotae") ## tests ## CO2 test_that("draw() can plot CO2 model 1", { skip_on_cran() skip_on_travis() skip_on_ci() CO2_mod1 <- gam(log(uptake) ~ s(log(conc), k = 5, bs = "tp") + s(Plant_uo, k = 12, bs = "re"), data = CO2, method = "REML", family = gaussian(), control = ctrl) plt <- draw(CO2_mod1, overall_uncertainty = TRUE) expect_doppelganger("hgam-paper-co2-model-1", plt) expect_silent(d <- derivatives(CO2_mod1)) }) test_that("draw() can plot CO2 model 2", { skip_on_cran() skip_on_travis() skip_on_ci() expect_warning( CO2_mod2 <- gam(log(uptake) ~ s(log(conc), k = 5, m = 2) + s(log(conc), Plant_uo, k = 5, bs = "fs", m = 2), data = CO2, method = "REML", family = gaussian(), control = ctrl), "model has repeated 1-d smooths of same variable." ) plt <- draw(CO2_mod2, overall_uncertainty = TRUE) expect_doppelganger("hgam-paper-co2-model-2", plt) expect_silent(d <- derivatives(CO2_mod2)) }) ## We show smooths 1, 14, 3, 5, 10, 13 in the paper code test_that("draw() can plot CO2 model 3", { skip_on_cran() skip_on_travis() skip_on_ci() CO2_mod3 <- gam(log(uptake) ~ s(log(conc), k = 5, m = 2, bs = "tp") + s(log(conc), by = Plant_uo, k = 5, m = 1, bs = "tp") + s(Plant_uo, bs = "re", k = 12), data = CO2, method = "REML", control = ctrl) plt <- draw(CO2_mod3, overall_uncertainty = TRUE) expect_doppelganger("hgam-paper-co2-model-3", plt) expect_silent(d <- derivatives(CO2_mod3)) }) test_that("draw() can plot CO2 model 4", { skip_on_cran() skip_on_travis() skip_on_ci() CO2_mod4 <- gam(log(uptake) ~ s(log(conc), Plant_uo, k = 5, bs = "fs", m = 2), data = CO2, method = "REML", control = ctrl) plt <- draw(CO2_mod4, overall_uncertainty = TRUE) expect_doppelganger("hgam-paper-co2-model-4", plt) expect_silent(d <- derivatives(CO2_mod4)) }) test_that("draw() can plot CO2 model 5", { skip_on_cran() skip_on_travis() skip_on_ci() CO2_mod5 <- gam(log(uptake) ~ s(log(conc), by = Plant_uo, k = 5, bs = "tp", m = 2) + s(Plant_uo, bs="re", k=12), data = CO2, method = "REML", control = ctrl) plt <- draw(CO2_mod5, overall_uncertainty = TRUE) expect_doppelganger("hgam-paper-co2-model-5", plt) expect_silent(d <- derivatives(CO2_mod5)) }) ## bird_move test_that("draw() can plot bird_move model 1", { skip_on_cran() skip_on_travis() skip_on_ci() bird_mod1 <- gam(count ~ te(week, latitude, bs=c("cc", "tp"), k = c(10, 10)), data = bird_move, method = "REML", family = poisson(), knots = list(week = c(0, 52)), control = ctrl) plt <- draw(bird_mod1, rug = FALSE) expect_doppelganger("hgam-paper-bird-move-model-1", plt) }) test_that("draw() can plot bird_move model 2", { skip_on_cran() skip_on_travis() skip_on_ci() bird_mod2 <- gam(count ~ te(week, latitude, bs=c("cc", "tp"), k = c(10, 10), m = 2) + t2(week, latitude, species, bs = c("cc", "tp", "re"), k = c(10, 10, 6), m = 2, full = TRUE), data = bird_move, method = "REML", family = poisson(), knots = list(week = c(0, 52)), control = ctrl) plt <- draw(bird_mod2, rug = FALSE) expect_doppelganger("hgam-paper-bird-move-model-2", plt) }) test_that("draw() can plot bird_move model 3", { skip_on_cran() skip_on_travis() skip_on_ci() bird_mod3 <- gam(count ~ species + te(week, latitude, bs = c("cc", "tp"), k = c(10, 10), m = 2) + te(week, latitude, by = species, bs = c("cc", "tp"), k = c(10, 10), m = 1), data = bird_move, method = "REML", family = poisson(), knots = list(week = c(0, 52)), control = ctrl) plt <- draw(bird_mod3, rug = FALSE) expect_doppelganger("hgam-paper-bird-move-model-3", plt) }) test_that("draw() throws message with bird_move model 4", { skip_on_cran() skip_on_travis() skip_on_ci() bird_mod4 <- gam(count ~ t2(week, latitude, species, bs = c("cc", "tp", "re"), k = c(10, 10, 6), m = c(2, 2, 2)), data = bird_move, method = "REML", family = poisson(), knots = list(week = c(0, 52)), control = ctrl) ## There's nothing we can currently do, as expect_silent(plt <- draw(bird_mod4, n = 25, rug = FALSE)) expect_doppelganger("hgam-paper-bird-move-model-4", plt) }) test_that("draw() can plot bird_move model 5", { skip_on_cran() skip_on_travis() skip_on_ci() bird_mod5 <- gam(count ~ species + te(week, latitude, by = species, bs = c("cc", "tp"), k = c(10, 10), m = 2), data = bird_move, method = "REML", family = poisson(), knots = list(week = c(0, 52)), control = ctrl) plt <- draw(bird_mod5, rug = FALSE) expect_doppelganger("hgam-paper-bird-move-model-5", plt) }) test_that("draw() can plot zoo_comm_mod model 4", { skip_on_cran() skip_on_travis() skip_on_ci() zoo_comm_mod4 <- gam(density_adj ~ s(day, taxon, bs="fs", k=10, xt=list(bs="cc"))+ s(taxon, year_f, bs="re"), data=zoo_train, knots = list(day =c(0, 365)), family = Gamma(link ="log"), method = "REML", drop.unused.levels = FALSE) plt <- draw(zoo_comm_mod4) expect_doppelganger("hgam-paper-zoop-model-4", plt) }) test_that("draw() can plot zoo_comm_mod model 5", { skip_on_cran() skip_on_ci() zoo_comm_mod5 <- gam(density_adj ~ s(day, by=taxon, k = 10, bs = "cc") + s(taxon, bs = "re") + s(taxon, year_f, bs = "re"), data = zoo_train, knots = list(day =c(0, 365)), family = Gamma(link ="log"), method = "REML", drop.unused.levels = FALSE) plt <- draw(zoo_comm_mod5) expect_doppelganger("hgam-paper-zoop-model-5", plt) })