## Test fitted-values() ## load packages library("testthat") library("gratia") library("mgcv") test_that("fitted_values() works for a GAM", { expect_silent(fv <- fitted_values(m_gam)) expect_named(fv, expected = c("x0", "x1", "x2", "x3", "fitted", "se", "lower", "upper")) expect_s3_class(fv, c("tbl_df", "tbl", "data.frame")) expect_identical(nrow(su_eg1), nrow(fv)) }) test_that("fitted_values() scale='response' works for a GAM", { expect_silent(fv <- fitted_values(m_gam, scale = "response")) expect_silent(fv2 <- fitted_values(m_gam, scale = "linear predictor")) expect_named(fv, expected = c("x0", "x1", "x2", "x3", "fitted", "se", "lower", "upper")) expect_s3_class(fv, c("tbl_df", "tbl", "data.frame")) expect_identical(nrow(su_eg1), nrow(fv)) expect_identical(fv, fv2) }) test_that("fitted_values() scale='link' works for a GAM", { expect_silent(fv <- fitted_values(m_gam, scale = "link")) expect_named(fv, expected = c("x0", "x1", "x2", "x3", "fitted", "se", "lower", "upper")) expect_s3_class(fv, c("tbl_df", "tbl", "data.frame")) expect_identical(nrow(su_eg1), nrow(fv)) }) test_that("fitted_values() works for a GAM", { new_df <- data_sim("eg1", n = 100, dist = "normal", scale = 2, seed = 1) expect_silent(fv <- fitted_values(m_gam, data = new_df)) expect_named(fv, expected = c(names(new_df), "fitted", "se", "lower", "upper")) expect_s3_class(fv, c("tbl_df", "tbl", "data.frame")) expect_identical(nrow(new_df), nrow(fv)) })