alpha <- 0.025 num_hyps <- 4 g <- random_graph(num_hyps) groups <- sample(1:num_hyps) test_groups <- list(groups[1:(num_hyps / 2)], groups[(num_hyps / 2 + 1):num_hyps]) test_corr_temp <- matrix(0.5, num_hyps / 2, num_hyps / 2) diag(test_corr_temp) <- 1 test_corr <- list(test_corr_temp, test_corr_temp) new_corr <- matrix(NA, num_hyps, num_hyps) for (group_num in seq_along(test_groups)) { new_corr[test_groups[[group_num]], test_groups[[group_num]]] <- test_corr[[group_num]] } diag(new_corr) <- 1 weighting_strategy <- graph_generate_weights(g) matrix_intersections <- weighting_strategy[, seq_len(num_hyps)] matrix_weights <- weighting_strategy[, -seq_len(num_hyps)] test_that("parametric", { set.seed(1234) list_corr <- adjust_weights_parametric( matrix_weights = matrix_weights, matrix_intersections = matrix_intersections, test_corr = test_corr, alpha = alpha, test_groups = test_groups ) set.seed(1234) single_corr <- adjust_weights_parametric_util( matrix_weights, matrix_intersections, new_corr, alpha, test_groups ) single_corr <- single_corr[, colnames(matrix_weights), drop = FALSE] expect_equal(list_corr, single_corr) })