# Avoid being tested on CRAN if(Sys.getenv("GPBOOST_ALL_TESTS") == "GPBOOST_ALL_TESTS"){ context("gpboost()") ON_WINDOWS <- .Platform$OS.type == "windows" data(agaricus.train, package = "gpboost") data(agaricus.test, package = "gpboost") train <- agaricus.train test <- agaricus.test TOLERANCE <- 1e-6 set.seed(708L) # [description] Every time this function is called, it adds 0.1 # to an accumulator then returns the current value. # This is used to mock the situation where an evaluation # metric increases every iteration ACCUMULATOR_ENVIRONMENT <- new.env() ACCUMULATOR_NAME <- "INCREASING_METRIC_ACUMULATOR" assign(x = ACCUMULATOR_NAME, value = 0.0, envir = ACCUMULATOR_ENVIRONMENT) .increasing_metric <- function(preds, dtrain) { if (!exists(ACCUMULATOR_NAME, envir = ACCUMULATOR_ENVIRONMENT)) { assign(ACCUMULATOR_NAME, 0.0, envir = ACCUMULATOR_ENVIRONMENT) } assign( x = ACCUMULATOR_NAME , value = get(ACCUMULATOR_NAME, envir = ACCUMULATOR_ENVIRONMENT) + 0.1 , envir = ACCUMULATOR_ENVIRONMENT ) return(list( name = "increasing_metric" , value = get(ACCUMULATOR_NAME, envir = ACCUMULATOR_ENVIRONMENT) , higher_better = TRUE )) } # [description] Evaluation function that always returns the # same value CONSTANT_METRIC_VALUE <- 0.2 .constant_metric <- function(preds, dtrain) { return(list( name = "constant_metric" , value = CONSTANT_METRIC_VALUE , higher_better = FALSE )) } # sample datasets to test early stopping DTRAIN_RANDOM_REGRESSION <- gpb.Dataset( data = as.matrix(rnorm(100L), ncol = 1L, drop = FALSE) , label = rnorm(100L) ) DVALID_RANDOM_REGRESSION <- gpb.Dataset( data = as.matrix(rnorm(50L), ncol = 1L, drop = FALSE) , label = rnorm(50L) ) DTRAIN_RANDOM_CLASSIFICATION <- gpb.Dataset( data = as.matrix(rnorm(120L), ncol = 1L, drop = FALSE) , label = sample(c(0L, 1L), size = 120L, replace = TRUE) ) DVALID_RANDOM_CLASSIFICATION <- gpb.Dataset( data = as.matrix(rnorm(37L), ncol = 1L, drop = FALSE) , label = sample(c(0L, 1L), size = 37L, replace = TRUE) ) test_that("train and predict binary classification", { nrounds <- 10L capture.output( bst <- gpboost( data = train$data , label = train$label , num_leaves = 5L , nrounds = nrounds , objective = "binary" , metric = "binary_error" ) , file='NUL') expect_false(is.null(bst$record_evals)) record_results <- gpb.get.eval.result(bst, "train", "binary_error") expect_lt(min(record_results), 0.02) pred <- predict(bst, test$data) expect_equal(length(pred), 1611L) pred1 <- predict(bst, train$data, num_iteration = 1L) expect_equal(length(pred1), 6513L) err_pred1 <- sum((pred1 > 0.5) != train$label) / length(train$label) err_log <- record_results[1L] expect_lt(abs(err_pred1 - err_log), TOLERANCE) }) test_that("train and predict softmax", { set.seed(708L) lb <- as.numeric(iris$Species) - 1L capture.output( bst <- gpboost( data = as.matrix(iris[, -5L]) , label = lb , num_leaves = 4L , learning_rate = 0.05 , nrounds = 20L , min_data = 20L , min_hessian = 10.0 , objective = "multiclass" , metric = "multi_error" , num_class = 3L ) , file='NUL') expect_false(is.null(bst$record_evals)) record_results <- gpb.get.eval.result(bst, "train", "multi_error") expect_lt(min(record_results), 0.06) pred <- predict(bst, as.matrix(iris[, -5L])) expect_equal(length(pred), nrow(iris) * 3L) }) test_that("use of multiple eval metrics works", { metrics <- list("binary_error", "auc", "binary_logloss") capture.output( bst <- gpboost( data = train$data , label = train$label , num_leaves = 4L , learning_rate = 1.0 , nrounds = 10L , objective = "binary" , metric = metrics ) , file='NUL') expect_false(is.null(bst$record_evals)) expect_named( bst$record_evals[["train"]] , unlist(metrics) , ignore.order = FALSE , ignore.case = FALSE ) }) test_that("gpb.Booster.upper_bound() and gpb.Booster.lower_bound() work as expected for binary classification", { set.seed(708L) nrounds <- 10L bst <- gpboost( data = train$data , label = train$label , num_leaves = 5L , nrounds = nrounds , objective = "binary" , metric = "binary_error" , verbose = 0 ) expect_true(abs(bst$lower_bound() - -1.590853) < TOLERANCE) expect_true(abs(bst$upper_bound() - 1.871015) < TOLERANCE) }) test_that("gpb.Booster.upper_bound() and gpb.Booster.lower_bound() work as expected for regression", { set.seed(708L) nrounds <- 10L bst <- gpboost( data = train$data , label = train$label , num_leaves = 5L , nrounds = nrounds , objective = "regression" , metric = "l2" , verbose = 0 ) expect_true(abs(bst$lower_bound() - 0.1513859) < TOLERANCE) expect_true(abs(bst$upper_bound() - 0.9080349) < TOLERANCE) }) test_that("gpboost() rejects negative or 0 value passed to nrounds", { dtrain <- gpb.Dataset(train$data, label = train$label) params <- list(objective = "regression", metric = "l2,l1") for (nround_value in c(-10L, 0L)) { expect_error({ bst <- gpboost( data = dtrain , params = params , nrounds = nround_value ) }, "nrounds should be greater than zero") } }) test_that("gpboost() performs evaluation on validation sets if they are provided", { set.seed(708L) dvalid1 <- gpb.Dataset( data = train$data , label = train$label ) dvalid2 <- gpb.Dataset( data = train$data , label = train$label ) nrounds <- 10L capture.output( bst <- gpboost( data = train$data , label = train$label , num_leaves = 5L , nrounds = nrounds , objective = "binary" , metric = c( "binary_error" , "auc" ) , valids = list( "valid1" = dvalid1 , "valid2" = dvalid2 ) ), file='NUL') expect_named( bst$record_evals , c("train", "valid1", "valid2", "start_iter") , ignore.order = TRUE , ignore.case = FALSE ) for (valid_name in c("train", "valid1", "valid2")) { eval_results <- bst$record_evals[[valid_name]][["binary_error"]] expect_length(eval_results[["eval"]], nrounds) } expect_true(abs(bst$record_evals[["train"]][["binary_error"]][["eval"]][[1L]] - 0.02226317) < TOLERANCE) expect_true(abs(bst$record_evals[["valid1"]][["binary_error"]][["eval"]][[1L]] - 0.02226317) < TOLERANCE) expect_true(abs(bst$record_evals[["valid2"]][["binary_error"]][["eval"]][[1L]] - 0.02226317) < TOLERANCE) }) context("training continuation") test_that("training continuation works", { dtrain <- gpb.Dataset( train$data , label = train$label , free_raw_data = FALSE ) watchlist <- list(train = dtrain) param <- list( objective = "binary" , metric = "binary_logloss" , num_leaves = 5L , learning_rate = 1.0 , verbose = 0 ) # train for 10 consecutive iterations bst <- gpb.train(param, dtrain, nrounds = 10L, valids = watchlist, verbose = 0) err_bst <- gpb.get.eval.result(bst, "train", "binary_logloss", 10L) # train for 5 iterations, save, load, train for 5 more bst1 <- gpb.train(param, dtrain, nrounds = 5L, valids = watchlist, verbose = 0) model_file <- tempfile(fileext = ".model") gpb.save(bst1, model_file) bst2 <- gpb.train(param, dtrain, nrounds = 5L, valids = watchlist, init_model = bst1, verbose = 0) err_bst2 <- gpb.get.eval.result(bst2, "train", "binary_logloss", 10L) # evaluation metrics should be nearly identical for the model trained in 10 coonsecutive # iterations and the one trained in 5-then-5. expect_lt(abs(err_bst - err_bst2), 0.01) }) context("gpb.cv()") test_that("cv works", { dtrain <- gpb.Dataset(train$data, label = train$label) params <- list(objective = "regression", metric = "l2,l1") bst <- gpb.cv( params = params , data = dtrain , nrounds = 10L , nfold = 5L , min_data = 1L , learning_rate = 1.0 , early_stopping_rounds = 10L , verbose = 0 ) expect_false(is.null(bst$record_evals)) }) test_that("gpb.cv() rejects negative or 0 value passed to nrounds", { dtrain <- gpb.Dataset(train$data, label = train$label) params <- list(objective = "regression", metric = "l2,l1") for (nround_value in c(-10L, 0L)) { expect_error({ bst <- gpb.cv( params = params , data = dtrain , nrounds = nround_value , nfold = 5L , min_data = 1L , verbose = 0 ) }, "nrounds should be greater than zero") } }) test_that("gpb.cv() throws an informative error is 'data' is not an gpb.Dataset and labels are not given", { bad_values <- list( 4L , "hello" , list(a = TRUE, b = seq_len(10L)) , data.frame(x = seq_len(5L), y = seq_len(5L)) , data.table::data.table(x = seq_len(5L), y = seq_len(5L)) , matrix(data = seq_len(10L), 2L, 5L) ) for (val in bad_values) { expect_error({ bst <- gpb.cv( params = list(objective = "regression", metric = "l2,l1") , data = val , nrounds = 10L , nfold = 5L , min_data = 1L , verbose = 0 ) }, regexp = "'label' must be provided for gpb.cv if 'data' is not an 'gpb.Dataset'", fixed = TRUE) } }) test_that("gpboost.cv() gives the correct best_score and best_iter for a metric where higher values are better", { set.seed(708L) dtrain <- gpb.Dataset( data = as.matrix(runif(n = 500L, min = 0.0, max = 15.0), drop = FALSE) , label = rep(c(0L, 1L), 250L, verbose = 0) ) nrounds <- 10L cv_bst <- gpb.cv( data = dtrain , nfold = 5L , nrounds = nrounds , num_leaves = 5L , params = list( objective = "binary" , metric = "auc,binary_error" , learning_rate = 1.5 ) , verbose = 0 ) expect_is(cv_bst, "gpb.CVBooster") expect_named( cv_bst$record_evals , c("start_iter", "valid") , ignore.order = FALSE , ignore.case = FALSE ) auc_scores <- unlist(cv_bst$record_evals[["valid"]][["auc"]][["eval"]]) expect_length(auc_scores, nrounds) expect_identical(cv_bst$best_iter, which.max(auc_scores)) expect_identical(cv_bst$best_score, auc_scores[which.max(auc_scores)]) }) test_that("gpb.cv() fit on linearly-relatead data improves when using linear learners", { set.seed(708L) .new_dataset <- function() { X <- matrix(rnorm(1000L), ncol = 1L) return(gpb.Dataset( data = X , label = 2L * X + runif(nrow(X), 0L, 0.1) )) } params <- list( objective = "regression" , verbose = -1L , metric = "mse" , seed = 0L , num_leaves = 2L ) dtrain <- .new_dataset() cv_bst <- gpb.cv( data = dtrain , nrounds = 10L , params = params , nfold = 5L , verbose = 0 ) expect_is(cv_bst, "gpb.CVBooster") dtrain <- .new_dataset() cv_bst_linear <- gpb.cv( data = dtrain , nrounds = 10L , params = modifyList(params, list(linear_tree = TRUE)) , nfold = 5L , verbose = 0 ) expect_is(cv_bst_linear, "gpb.CVBooster") expect_true(cv_bst_linear$best_score < cv_bst$best_score) }) test_that("gpb.cv() respects showsd argument", { dtrain <- gpb.Dataset(train$data, label = train$label) params <- list(objective = "regression", metric = "l2") nrounds <- 5L set.seed(708L) capture.output( bst_showsd <- gpb.cv( params = params , data = dtrain , nrounds = nrounds , nfold = 3L , min_data = 1L , showsd = TRUE ) , file='NUL') evals_showsd <- bst_showsd$record_evals[["valid"]][["l2"]] set.seed(708L) capture.output( bst_no_showsd <- gpb.cv( params = params , data = dtrain , nrounds = nrounds , nfold = 3L , min_data = 1L , showsd = FALSE ) , file='NUL') evals_no_showsd <- bst_no_showsd$record_evals[["valid"]][["l2"]] expect_equal( evals_showsd[["eval"]] , evals_no_showsd[["eval"]] ) expect_is(evals_showsd[["eval_err"]], "list") expect_equal(length(evals_showsd[["eval_err"]]), nrounds) expect_identical(evals_no_showsd[["eval_err"]], list()) }) context("gpb.train()") test_that("gpb.train() works as expected with multiple eval metrics", { metrics <- c("binary_error", "auc", "binary_logloss") capture.output( bst <- gpb.train( data = gpb.Dataset( train$data , label = train$label ) , learning_rate = 1.0 , nrounds = 10L , params = list( objective = "binary" , metric = metrics ) , valids = list( "train" = gpb.Dataset( train$data , label = train$label ) ) ) , file='NUL') expect_false(is.null(bst$record_evals)) expect_named( bst$record_evals[["train"]] , unlist(metrics) , ignore.order = FALSE , ignore.case = FALSE ) }) test_that("gpb.train() rejects negative or 0 value passed to nrounds", { dtrain <- gpb.Dataset(train$data, label = train$label) params <- list(objective = "regression", metric = "l2,l1") for (nround_value in c(-10L, 0L)) { expect_error({ bst <- gpb.train( params , data = dtrain , nround_value ) }, "nrounds should be greater than zero") } }) test_that("gpb.train() throws an informative error if 'data' is not an gpb.Dataset", { bad_values <- list( 4L , "hello" , list(a = TRUE, b = seq_len(10L)) , data.frame(x = seq_len(5L), y = seq_len(5L)) , data.table::data.table(x = seq_len(5L), y = seq_len(5L)) , matrix(data = seq_len(10L), 2L, 5L) ) for (val in bad_values) { expect_error({ bst <- gpb.train( params = list(objective = "regression", metric = "l2,l1") , data = val , 10L ) }, regexp = "data must be an gpb.Dataset instance", fixed = TRUE) } }) test_that("gpb.train() throws an informative error if 'valids' is not a list of gpb.Dataset objects", { valids <- list( "valid1" = data.frame(x = rnorm(5L), y = rnorm(5L)) , "valid2" = data.frame(x = rnorm(5L), y = rnorm(5L)) ) expect_error({ bst <- gpb.train( params = list(objective = "regression", metric = "l2,l1") , data = gpb.Dataset(train$data, label = train$label) , 10L , valids = valids ) }, regexp = "valids must be a list of gpb.Dataset elements") }) test_that("gpb.train() errors if 'valids' is a list of gpb.Dataset objects but some do not have names", { valids <- list( "valid1" = gpb.Dataset(matrix(rnorm(10L), 5L, 2L)) , gpb.Dataset(matrix(rnorm(10L), 2L, 5L)) ) expect_error({ bst <- gpb.train( params = list(objective = "regression", metric = "l2,l1") , data = gpb.Dataset(train$data, label = train$label) , 10L , valids = valids ) }, regexp = "each element of valids must have a name") }) test_that("gpb.train() throws an informative error if 'valids' contains gpb.Dataset objects but none have names", { valids <- list( gpb.Dataset(matrix(rnorm(10L), 5L, 2L)) , gpb.Dataset(matrix(rnorm(10L), 2L, 5L)) ) expect_error({ bst <- gpb.train( params = list(objective = "regression", metric = "l2,l1") , data = gpb.Dataset(train$data, label = train$label) , 10L , valids = valids ) }, regexp = "each element of valids must have a name") }) if(Sys.getenv("GPBOOST_ALL_TESTS") == "GPBOOST_ALL_TESTS"){ test_that("gpb.train() works with force_col_wise and force_row_wise", { set.seed(1234L) nrounds <- 10L dtrain <- gpb.Dataset( train$data , label = train$label ) params <- list( objective = "binary" , metric = "binary_error" , force_col_wise = TRUE ) bst_col_wise <- gpb.train( params = params , data = dtrain , nrounds = nrounds , verbose = 0 ) params <- list( objective = "binary" , metric = "binary_error" , force_row_wise = TRUE ) bst_row_wise <- gpb.train( params = params , data = dtrain , nrounds = nrounds , verbose = 0 ) expected_error <- 0.003070782 expect_equal(bst_col_wise$eval_train()[[1L]][["value"]], expected_error) expect_equal(bst_row_wise$eval_train()[[1L]][["value"]], expected_error) # check some basic details of the boosters just to be sure force_col_wise # and force_row_wise are not causing any weird side effects for (bst in list(bst_row_wise, bst_col_wise)) { expect_equal(bst$current_iter(), nrounds) parsed_model <- RJSONIO::fromJSON(bst$dump_model()) expect_equal(parsed_model$objective, "binary sigmoid:1") expect_false(parsed_model$average_output) } }) } test_that("gpb.train() works as expected with sparse features", { set.seed(708L) num_obs <- 70000L trainDF <- data.frame( y = sample(c(0L, 1L), size = num_obs, replace = TRUE) , x = sample(c(1.0:10.0, rep(NA_real_, 50L)), size = num_obs, replace = TRUE) ) dtrain <- gpb.Dataset( data = as.matrix(trainDF[["x"]], drop = FALSE) , label = trainDF[["y"]] ) nrounds <- 1L bst <- gpb.train( params = list( objective = "binary" , min_data = 1L , min_data_in_bin = 1L ) , data = dtrain , nrounds = nrounds , verbose = 0 ) expect_true(gpboost:::gpb.is.Booster(bst)) expect_equal(bst$current_iter(), nrounds) parsed_model <- RJSONIO::fromJSON(bst$dump_model()) expect_equal(parsed_model$objective, "binary sigmoid:1") expect_false(parsed_model$average_output) expected_error <- 0.6931268 expect_true(abs(bst$eval_train()[[1L]][["value"]] - expected_error) < TOLERANCE) }) test_that("gpb.train() works with early stopping for classification", { trainDF <- data.frame( "feat1" = rep(c(5.0, 10.0), 500L) , "target" = rep(c(0L, 1L), 500L) ) validDF <- data.frame( "feat1" = rep(c(5.0, 10.0), 50L) , "target" = rep(c(0L, 1L), 50L) ) dtrain <- gpb.Dataset( data = as.matrix(trainDF[["feat1"]], drop = FALSE) , label = trainDF[["target"]] ) dvalid <- gpb.Dataset( data = as.matrix(validDF[["feat1"]], drop = FALSE) , label = validDF[["target"]] ) nrounds <- 10L ################################ # train with no early stopping # ################################ bst <- gpb.train( params = list( objective = "binary" , metric = "binary_error" ) , data = dtrain , nrounds = nrounds , valids = list( "valid1" = dvalid ) , verbose = 0 ) # a perfect model should be trivial to obtain, but all 10 rounds # should happen expect_equal(bst$best_score, 0.0) expect_equal(bst$best_iter, 1L) expect_equal(length(bst$record_evals[["valid1"]][["binary_error"]][["eval"]]), nrounds) ############################# # train with early stopping # ############################# early_stopping_rounds <- 5L bst <- gpb.train( params = list( objective = "binary" , metric = "binary_error" , early_stopping_rounds = early_stopping_rounds ) , data = dtrain , nrounds = nrounds , valids = list( "valid1" = dvalid ) , verbose = 0 ) # a perfect model should be trivial to obtain, and only 6 rounds # should have happen (1 with improvement, 5 consecutive with no improvement) expect_equal(bst$best_score, 0.0) expect_equal(bst$best_iter, 1L) expect_equal( length(bst$record_evals[["valid1"]][["binary_error"]][["eval"]]) , early_stopping_rounds + 1L ) }) test_that("gpb.train() treats early_stopping_rounds<=0 as disabling early stopping", { set.seed(708L) trainDF <- data.frame( "feat1" = rep(c(5.0, 10.0), 500L) , "target" = rep(c(0L, 1L), 500L) ) validDF <- data.frame( "feat1" = rep(c(5.0, 10.0), 50L) , "target" = rep(c(0L, 1L), 50L) ) dtrain <- gpb.Dataset( data = as.matrix(trainDF[["feat1"]], drop = FALSE) , label = trainDF[["target"]] ) dvalid <- gpb.Dataset( data = as.matrix(validDF[["feat1"]], drop = FALSE) , label = validDF[["target"]] ) nrounds <- 5L for (value in c(-5L, 0L)) { #----------------------------# # passed as keyword argument # #----------------------------# bst <- gpb.train( params = list( objective = "binary" , metric = "binary_error" ) , data = dtrain , nrounds = nrounds , valids = list( "valid1" = dvalid ) , early_stopping_rounds = value , verbose = 0 ) # a perfect model should be trivial to obtain, but all 10 rounds # should happen expect_equal(bst$best_score, 0.0) expect_equal(bst$best_iter, 1L) expect_equal(length(bst$record_evals[["valid1"]][["binary_error"]][["eval"]]), nrounds) #---------------------------# # passed as parameter alias # #---------------------------# bst <- gpb.train( params = list( objective = "binary" , metric = "binary_error" , n_iter_no_change = value ) , data = dtrain , nrounds = nrounds , valids = list( "valid1" = dvalid ) , verbose = 0 ) # a perfect model should be trivial to obtain, but all 10 rounds # should happen expect_equal(bst$best_score, 0.0) expect_equal(bst$best_iter, 1L) expect_equal(length(bst$record_evals[["valid1"]][["binary_error"]][["eval"]]), nrounds) } }) test_that("gpb.train() works with early stopping for classification with a metric that should be maximized", { set.seed(708L) dtrain <- gpb.Dataset( data = train$data , label = train$label ) dvalid <- gpb.Dataset( data = test$data , label = test$label ) nrounds <- 10L ############################# # train with early stopping # ############################# early_stopping_rounds <- 5L # the harsh max_depth guarantees that AUC improves over at least the first few iterations bst_auc <- gpb.train( params = list( objective = "binary" , metric = "auc" , max_depth = 3L , early_stopping_rounds = early_stopping_rounds ) , data = dtrain , nrounds = nrounds , valids = list( "valid1" = dvalid ) , verbose = 0 ) bst_binary_error <- gpb.train( params = list( objective = "binary" , metric = "binary_error" , max_depth = 3L , early_stopping_rounds = early_stopping_rounds ) , data = dtrain , nrounds = nrounds , valids = list( "valid1" = dvalid ) , verbose = 0 ) # early stopping should have been hit for binary_error (higher_better = FALSE) eval_info <- bst_binary_error$.__enclos_env__$private$get_eval_info() expect_identical(eval_info, "binary_error") expect_identical( unname(bst_binary_error$.__enclos_env__$private$higher_better_inner_eval) , FALSE ) expect_identical(bst_binary_error$best_iter, 1L) expect_identical(bst_binary_error$current_iter(), early_stopping_rounds + 1L) expect_true(abs(bst_binary_error$best_score - 0.01613904) < TOLERANCE) # early stopping should not have been hit for AUC (higher_better = TRUE) eval_info <- bst_auc$.__enclos_env__$private$get_eval_info() expect_identical(eval_info, "auc") expect_identical( unname(bst_auc$.__enclos_env__$private$higher_better_inner_eval) , TRUE ) expect_identical(bst_auc$best_iter, 10L) expect_identical(bst_auc$current_iter(), nrounds) expect_true(abs(bst_auc$best_score - 1) < TOLERANCE) }) test_that("gpb.train() works with early stopping for regression", { set.seed(708L) trainDF <- data.frame( "feat1" = rep(c(10.0, 100.0), 500L) , "target" = rep(c(-50.0, 50.0), 500L) ) validDF <- data.frame( "feat1" = rep(50.0, 4L) , "target" = rep(50.0, 4L) ) dtrain <- gpb.Dataset( data = as.matrix(trainDF[["feat1"]], drop = FALSE) , label = trainDF[["target"]] ) dvalid <- gpb.Dataset( data = as.matrix(validDF[["feat1"]], drop = FALSE) , label = validDF[["target"]] ) nrounds <- 10L ################################ # train with no early stopping # ################################ bst <- gpb.train( params = list( objective = "regression" , metric = "rmse" ) , data = dtrain , nrounds = nrounds , valids = list( "valid1" = dvalid ) , verbose = 0 ) # the best possible model should come from the first iteration, but # all 10 training iterations should happen expect_equal(bst$best_score, 55.0) expect_equal(bst$best_iter, 1L) expect_equal(length(bst$record_evals[["valid1"]][["rmse"]][["eval"]]), nrounds) ############################# # train with early stopping # ############################# early_stopping_rounds <- 5L bst <- gpb.train( params = list( objective = "regression" , metric = "rmse" , early_stopping_rounds = early_stopping_rounds ) , data = dtrain , nrounds = nrounds , valids = list( "valid1" = dvalid ) , verbose = 0 ) # the best model should be from the first iteration, and only 6 rounds # should have happen (1 with improvement, 5 consecutive with no improvement) expect_equal(bst$best_score, 55.0) expect_equal(bst$best_iter, 1L) expect_equal( length(bst$record_evals[["valid1"]][["rmse"]][["eval"]]) , early_stopping_rounds + 1L ) }) test_that("gpb.train() does not stop early if early_stopping_rounds is not given", { set.seed(708L) increasing_metric_starting_value <- get( ACCUMULATOR_NAME , envir = ACCUMULATOR_ENVIRONMENT ) nrounds <- 10L metrics <- list( .constant_metric , .increasing_metric ) bst <- gpb.train( params = list( objective = "regression" , metric = "None" ) , data = DTRAIN_RANDOM_REGRESSION , nrounds = nrounds , valids = list("valid1" = DVALID_RANDOM_REGRESSION) , eval = metrics , verbose = 0 ) # Only the two functions provided to "eval" should have been evaluated expect_equal(length(bst$record_evals[["valid1"]]), 2L) # all 10 iterations should have happen, and the best_iter should be # the first one (based on constant_metric) best_iter <- 1L expect_equal(bst$best_iter, best_iter) # best_score should be taken from the first metric expect_equal( bst$best_score , bst$record_evals[["valid1"]][["constant_metric"]][["eval"]][[best_iter]] ) # early stopping should not have happened. Even though constant_metric # had 9 consecutive iterations with no improvement, it is ignored because of # first_metric_only = TRUE expect_equal( length(bst$record_evals[["valid1"]][["constant_metric"]][["eval"]]) , nrounds ) expect_equal( length(bst$record_evals[["valid1"]][["increasing_metric"]][["eval"]]) , nrounds ) }) test_that("If first_metric_only is not given or is FALSE, gpb.train() decides to stop early based on all metrics", { set.seed(708L) early_stopping_rounds <- 3L param_variations <- list( list( objective = "regression" , metric = "None" , early_stopping_rounds = early_stopping_rounds ) , list( objective = "regression" , metric = "None" , early_stopping_rounds = early_stopping_rounds , first_metric_only = FALSE ) ) for (params in param_variations) { nrounds <- 10L bst <- gpb.train( params = params , data = DTRAIN_RANDOM_REGRESSION , nrounds = nrounds , valids = list( "valid1" = DVALID_RANDOM_REGRESSION ) , eval = list( .increasing_metric , .constant_metric ) , verbose = 0 ) # Only the two functions provided to "eval" should have been evaluated expect_equal(length(bst$record_evals[["valid1"]]), 2L) # early stopping should have happened, and should have stopped early_stopping_rounds + 1 rounds in # because constant_metric never improves # # the best iteration should be the last one, because increasing_metric was first # and gets better every iteration best_iter <- early_stopping_rounds + 1L expect_equal(bst$best_iter, best_iter) # best_score should be taken from "increasing_metric" because it was first expect_equal( bst$best_score , bst$record_evals[["valid1"]][["increasing_metric"]][["eval"]][[best_iter]] ) # early stopping should not have happened. even though increasing_metric kept # getting better, early stopping should have happened because "constant_metric" # did not improve expect_equal( length(bst$record_evals[["valid1"]][["constant_metric"]][["eval"]]) , early_stopping_rounds + 1L ) expect_equal( length(bst$record_evals[["valid1"]][["increasing_metric"]][["eval"]]) , early_stopping_rounds + 1L ) } }) test_that("If first_metric_only is TRUE, gpb.train() decides to stop early based on only the first metric", { set.seed(708L) nrounds <- 10L early_stopping_rounds <- 3L increasing_metric_starting_value <- get(ACCUMULATOR_NAME, envir = ACCUMULATOR_ENVIRONMENT) bst <- gpb.train( params = list( objective = "regression" , metric = "None" , early_stopping_rounds = early_stopping_rounds , first_metric_only = TRUE ) , data = DTRAIN_RANDOM_REGRESSION , nrounds = nrounds , valids = list( "valid1" = DVALID_RANDOM_REGRESSION ) , eval = list( .increasing_metric , .constant_metric ) , verbose = 0 ) # Only the two functions provided to "eval" should have been evaluated expect_equal(length(bst$record_evals[["valid1"]]), 2L) # all 10 iterations should happen, and the best_iter should be the final one expect_equal(bst$best_iter, nrounds) # best_score should be taken from "increasing_metric" expect_equal( bst$best_score , increasing_metric_starting_value + 0.1 * nrounds ) # early stopping should not have happened. Even though constant_metric # had 9 consecutive iterations with no improvement, it is ignored because of # first_metric_only = TRUE expect_equal( length(bst$record_evals[["valid1"]][["constant_metric"]][["eval"]]) , nrounds ) expect_equal( length(bst$record_evals[["valid1"]][["increasing_metric"]][["eval"]]) , nrounds ) }) test_that("gpb.train() works when a mixture of functions and strings are passed to eval", { set.seed(708L) nrounds <- 10L increasing_metric_starting_value <- get(ACCUMULATOR_NAME, envir = ACCUMULATOR_ENVIRONMENT) bst <- gpb.train( params = list( objective = "regression" , metric = "None" ) , data = DTRAIN_RANDOM_REGRESSION , nrounds = nrounds , valids = list( "valid1" = DVALID_RANDOM_REGRESSION ) , eval = list( .increasing_metric , "rmse" , .constant_metric , "l2" ) , verbose = 0 ) # all 4 metrics should have been used expect_named( bst$record_evals[["valid1"]] , expected = c("rmse", "l2", "increasing_metric", "constant_metric") , ignore.order = TRUE , ignore.case = FALSE ) # the difference metrics shouldn't have been mixed up with each other results <- bst$record_evals[["valid1"]] expect_true(abs(results[["rmse"]][["eval"]][[1L]] - 1.105012) < TOLERANCE) expect_true(abs(results[["l2"]][["eval"]][[1L]] - 1.221051) < TOLERANCE) expected_increasing_metric <- increasing_metric_starting_value + 0.1 expect_true( abs( results[["increasing_metric"]][["eval"]][[1L]] - expected_increasing_metric ) < TOLERANCE ) expect_true(abs(results[["constant_metric"]][["eval"]][[1L]] - CONSTANT_METRIC_VALUE) < TOLERANCE) }) test_that("gpb.train() works when a list of strings or a character vector is passed to eval", { # testing list and character vector, as well as length-1 and length-2 eval_variations <- list( c("binary_error", "binary_logloss") , "binary_logloss" , list("binary_error", "binary_logloss") , list("binary_logloss") ) for (eval_variation in eval_variations) { set.seed(708L) nrounds <- 10L increasing_metric_starting_value <- get(ACCUMULATOR_NAME, envir = ACCUMULATOR_ENVIRONMENT) bst <- gpb.train( params = list( objective = "binary" , metric = "None" ) , data = DTRAIN_RANDOM_CLASSIFICATION , nrounds = nrounds , valids = list( "valid1" = DVALID_RANDOM_CLASSIFICATION ) , eval = eval_variation , verbose = 0 ) # both metrics should have been used expect_named( bst$record_evals[["valid1"]] , expected = unlist(eval_variation) , ignore.order = TRUE , ignore.case = FALSE ) # the difference metrics shouldn't have been mixed up with each other results <- bst$record_evals[["valid1"]] if ("binary_error" %in% unlist(eval_variation)) { expect_true(abs(results[["binary_error"]][["eval"]][[1L]] - 0.4864865) < TOLERANCE) } if ("binary_logloss" %in% unlist(eval_variation)) { expect_true(abs(results[["binary_logloss"]][["eval"]][[1L]] - 0.6932548) < TOLERANCE) } } }) test_that("gpb.train() works when you specify both 'metric' and 'eval' with strings", { set.seed(708L) nrounds <- 10L increasing_metric_starting_value <- get(ACCUMULATOR_NAME, envir = ACCUMULATOR_ENVIRONMENT) bst <- gpb.train( params = list( objective = "binary" , metric = "binary_error" ) , data = DTRAIN_RANDOM_CLASSIFICATION , nrounds = nrounds , valids = list( "valid1" = DVALID_RANDOM_CLASSIFICATION ) , eval = "binary_logloss" , verbose = 0 ) # both metrics should have been used expect_named( bst$record_evals[["valid1"]] , expected = c("binary_error", "binary_logloss") , ignore.order = TRUE , ignore.case = FALSE ) # the difference metrics shouldn't have been mixed up with each other results <- bst$record_evals[["valid1"]] expect_true(abs(results[["binary_error"]][["eval"]][[1L]] - 0.4864865) < TOLERANCE) expect_true(abs(results[["binary_logloss"]][["eval"]][[1L]] - 0.6932548) < TOLERANCE) }) test_that("gpb.train() works when you give a function for eval", { set.seed(708L) nrounds <- 10L increasing_metric_starting_value <- get(ACCUMULATOR_NAME, envir = ACCUMULATOR_ENVIRONMENT) bst <- gpb.train( params = list( objective = "binary" , metric = "None" ) , data = DTRAIN_RANDOM_CLASSIFICATION , nrounds = nrounds , valids = list( "valid1" = DVALID_RANDOM_CLASSIFICATION ) , eval = .constant_metric , verbose = 0 ) # the difference metrics shouldn't have been mixed up with each other results <- bst$record_evals[["valid1"]] expect_true(abs(results[["constant_metric"]][["eval"]][[1L]] - CONSTANT_METRIC_VALUE) < TOLERANCE) }) test_that("gpb.train() works with early stopping for regression with a metric that should be minimized", { set.seed(708L) trainDF <- data.frame( "feat1" = rep(c(10.0, 100.0), 500L) , "target" = rep(c(-50.0, 50.0), 500L) ) validDF <- data.frame( "feat1" = rep(50.0, 4L) , "target" = rep(50.0, 4L) ) dtrain <- gpb.Dataset( data = as.matrix(trainDF[["feat1"]], drop = FALSE) , label = trainDF[["target"]] ) dvalid <- gpb.Dataset( data = as.matrix(validDF[["feat1"]], drop = FALSE) , label = validDF[["target"]] ) nrounds <- 10L ############################# # train with early stopping # ############################# early_stopping_rounds <- 5L bst <- gpb.train( params = list( objective = "regression" , metric = c( "mape" , "rmse" , "mae" ) , min_data_in_bin = 5L , early_stopping_rounds = early_stopping_rounds ) , data = dtrain , nrounds = nrounds , valids = list( "valid1" = dvalid ) , verbose = 0 ) # the best model should be from the first iteration, and only 6 rounds # should have happened (1 with improvement, 5 consecutive with no improvement) expect_equal(bst$best_score, 1.1) expect_equal(bst$best_iter, 1L) expect_equal( length(bst$record_evals[["valid1"]][["mape"]][["eval"]]) , early_stopping_rounds + 1L ) # Booster should understand thatt all three of these metrics should be minimized eval_info <- bst$.__enclos_env__$private$get_eval_info() expect_identical(eval_info, c("mape", "rmse", "l1")) expect_identical( unname(bst$.__enclos_env__$private$higher_better_inner_eval) , rep(FALSE, 3L) ) }) test_that("when early stopping is not activated, best_iter and best_score come from valids and not training data", { set.seed(708L) trainDF <- data.frame( "feat1" = rep(c(10.0, 100.0), 500L) , "target" = rep(c(-50.0, 50.0), 500L) ) validDF <- data.frame( "feat1" = rep(50.0, 4L) , "target" = rep(50.0, 4L) ) validDF2 <- data.frame( "feat1" = rep(c(50.0,10), 4L) , "target" = rep(c(50.0,-50.), 4L) ) dtrain <- gpb.Dataset( data = as.matrix(trainDF[["feat1"]], drop = FALSE) , label = trainDF[["target"]] ) dvalid1 <- gpb.Dataset( data = as.matrix(validDF[["feat1"]], drop = FALSE) , label = validDF[["target"]] ) dvalid2 <- gpb.Dataset( data = as.matrix(validDF2[["feat1"]], drop = FALSE) , label = validDF2[["target"]] ) nrounds <- 10L train_params <- list( objective = "regression" , metric = "rmse" , learning_rate = 1.5 ) # example 1: two valids, neither are the training data bst <- gpb.train( data = dtrain , nrounds = nrounds , num_leaves = 5L , valids = list( "valid1" = dvalid1 , "valid2" = dvalid2 ) , params = train_params , verbose = 0 ) expect_named( bst$record_evals , c("start_iter", "valid1", "valid2") , ignore.order = FALSE , ignore.case = FALSE ) rmse_scores <- unlist(bst$record_evals[["valid1"]][["rmse"]][["eval"]]) expect_length(rmse_scores, nrounds) expect_identical(bst$best_iter, which.min(rmse_scores)) expect_identical(bst$best_score, rmse_scores[which.min(rmse_scores)]) # example 2: train first (called "train") and two valids bst <- gpb.train( data = dtrain , nrounds = nrounds , num_leaves = 5L , valids = list( "train" = dtrain , "valid1" = dvalid1 , "valid2" = dvalid2 ) , params = train_params , verbose = 0 ) expect_named( bst$record_evals , c("start_iter", "train", "valid1", "valid2") , ignore.order = FALSE , ignore.case = FALSE ) rmse_scores <- unlist(bst$record_evals[["valid1"]][["rmse"]][["eval"]]) expect_length(rmse_scores, nrounds) expect_identical(bst$best_iter, which.min(rmse_scores)) expect_identical(bst$best_score, rmse_scores[which.min(rmse_scores)]) # example 3: train second (called "train") and two valids bst <- gpb.train( data = dtrain , nrounds = nrounds , num_leaves = 5L , valids = list( "valid1" = dvalid1 , "train" = dtrain , "valid2" = dvalid2 ) , params = train_params , verbose = 0 ) # note that "train" still ends up as the first one expect_named( bst$record_evals , c("start_iter", "train", "valid1", "valid2") , ignore.order = FALSE , ignore.case = FALSE ) rmse_scores <- unlist(bst$record_evals[["valid1"]][["rmse"]][["eval"]]) expect_length(rmse_scores, nrounds) expect_identical(bst$best_iter, which.min(rmse_scores)) expect_identical(bst$best_score, rmse_scores[which.min(rmse_scores)]) # example 4: train third (called "train") and two valids bst <- gpb.train( data = dtrain , nrounds = nrounds , num_leaves = 5L , valids = list( "valid1" = dvalid1 , "valid2" = dvalid2 , "train" = dtrain ) , params = train_params , verbose = 0 ) # note that "train" still ends up as the first one expect_named( bst$record_evals , c("start_iter", "train", "valid1", "valid2") , ignore.order = FALSE , ignore.case = FALSE ) rmse_scores <- unlist(bst$record_evals[["valid1"]][["rmse"]][["eval"]]) expect_length(rmse_scores, nrounds) expect_identical(bst$best_iter, which.min(rmse_scores)) expect_identical(bst$best_score, rmse_scores[which.min(rmse_scores)]) # example 5: train second (called "something-random-we-would-not-hardcode") and two valids bst <- gpb.train( data = dtrain , nrounds = nrounds , num_leaves = 5L , valids = list( "valid1" = dvalid1 , "something-random-we-would-not-hardcode" = dtrain , "valid2" = dvalid2 ) , params = train_params , verbose = 0 ) # note that "something-random-we-would-not-hardcode" was recognized as the training # data even though it isn't named "train" expect_named( bst$record_evals , c("start_iter", "something-random-we-would-not-hardcode", "valid1", "valid2") , ignore.order = FALSE , ignore.case = FALSE ) rmse_scores <- unlist(bst$record_evals[["valid1"]][["rmse"]][["eval"]]) expect_length(rmse_scores, nrounds) expect_identical(bst$best_iter, which.min(rmse_scores)) expect_identical(bst$best_score, rmse_scores[which.min(rmse_scores)]) # example 6: the only valid supplied is the training data bst <- gpb.train( data = dtrain , nrounds = nrounds , num_leaves = 5L , valids = list( "train" = dtrain ) , params = train_params , verbose = 0 ) expect_identical(bst$best_iter, -1L) expect_identical(bst$best_score, NA_real_) }) test_that("gpboost.train() gives the correct best_score and best_iter for a metric where higher values are better", { set.seed(708L) trainDF <- data.frame( "feat1" = runif(n = 500L, min = 0.0, max = 15.0) , "target" = rep(c(0L, 1L), 500L) ) validDF <- data.frame( "feat1" = runif(n = 50L, min = 0.0, max = 15.0) , "target" = rep(c(0L, 1L), 50L) ) dtrain <- gpb.Dataset( data = as.matrix(trainDF[["feat1"]], drop = FALSE) , label = trainDF[["target"]] ) dvalid1 <- gpb.Dataset( data = as.matrix(validDF[1L:25L, "feat1"], drop = FALSE) , label = validDF[1L:25L, "target"] ) nrounds <- 10L bst <- gpb.train( data = dtrain , nrounds = nrounds , num_leaves = 5L , valids = list( "valid1" = dvalid1 , "something-random-we-would-not-hardcode" = dtrain ) , params = list( objective = "binary" , metric = "auc" , learning_rate = 1.5 ) , verbose = 0 ) # note that "something-random-we-would-not-hardcode" was recognized as the training # data even though it isn't named "train" expect_named( bst$record_evals , c("start_iter", "something-random-we-would-not-hardcode", "valid1") , ignore.order = FALSE , ignore.case = FALSE ) auc_scores <- unlist(bst$record_evals[["valid1"]][["auc"]][["eval"]]) expect_length(auc_scores, nrounds) expect_identical(bst$best_iter, which.max(auc_scores)) expect_identical(bst$best_score, auc_scores[which.max(auc_scores)]) }) test_that("using gpboost() without early stopping, best_iter and best_score come from valids and not training data", { set.seed(708L) # example: train second (called "something-random-we-would-not-hardcode"), two valids, # and a metric where higher values are better ("auc") trainDF <- data.frame( "feat1" = runif(n = 500L, min = 0.0, max = 15.0) , "target" = rep(c(0L, 1L), 500L) ) validDF <- data.frame( "feat1" = runif(n = 50L, min = 0.0, max = 15.0) , "target" = rep(c(0L, 1L), 50L) ) dtrain <- gpb.Dataset( data = as.matrix(trainDF[["feat1"]], drop = FALSE) , label = trainDF[["target"]] ) dvalid1 <- gpb.Dataset( data = as.matrix(validDF[1L:25L, "feat1"], drop = FALSE) , label = validDF[1L:25L, "target"] ) dvalid2 <- gpb.Dataset( data = as.matrix(validDF[26L:50L, "feat1"], drop = FALSE) , label = validDF[26L:50L, "target"] ) nrounds <- 10L bst <- gpboost( data = dtrain , nrounds = nrounds , num_leaves = 5L , valids = list( "valid1" = dvalid1 , "something-random-we-would-not-hardcode" = dtrain , "valid2" = dvalid2 ) , params = list( objective = "binary" , metric = "auc" , learning_rate = 1.5 ) , verbose = -7L ) # when verbose <= 0 is passed to gpboost(), 'valids' is passed through to gpb.train() # untouched. If you set verbose to > 0, the training data will still be first but called "train" expect_named( bst$record_evals , c("start_iter", "something-random-we-would-not-hardcode", "valid1", "valid2") , ignore.order = FALSE , ignore.case = FALSE ) auc_scores <- unlist(bst$record_evals[["valid1"]][["auc"]][["eval"]]) expect_length(auc_scores, nrounds) expect_identical(bst$best_iter, which.max(auc_scores)) expect_identical(bst$best_score, auc_scores[which.max(auc_scores)]) }) test_that("gpb.cv() works when you specify both 'metric' and 'eval' with strings", { set.seed(708L) nrounds <- 10L nfolds <- 4L increasing_metric_starting_value <- get(ACCUMULATOR_NAME, envir = ACCUMULATOR_ENVIRONMENT) capture.output( bst <- gpb.cv( params = list( objective = "binary" , metric = "binary_error" ) , data = DTRAIN_RANDOM_CLASSIFICATION , nrounds = nrounds , nfold = nfolds , eval = "binary_logloss" ), file='NUL') # both metrics should have been used expect_named( bst$record_evals[["valid"]] , expected = c("binary_error", "binary_logloss") , ignore.order = TRUE , ignore.case = FALSE ) # the difference metrics shouldn't have been mixed up with each other results <- bst$record_evals[["valid"]] expect_true(abs(results[["binary_error"]][["eval"]][[1L]] - 0.5005654) < TOLERANCE) expect_true(abs(results[["binary_logloss"]][["eval"]][[1L]] - 0.7016582) < TOLERANCE) # all boosters should have been created expect_length(bst$boosters, nfolds) }) test_that("gpb.cv() works when you give a function for eval", { set.seed(708L) nrounds <- 10L nfolds <- 3L increasing_metric_starting_value <- get(ACCUMULATOR_NAME, envir = ACCUMULATOR_ENVIRONMENT) capture.output( bst <- gpb.cv( params = list( objective = "binary" , metric = "None" ) , data = DTRAIN_RANDOM_CLASSIFICATION , nfold = nfolds , nrounds = nrounds , eval = .constant_metric ), file='NUL') # the difference metrics shouldn't have been mixed up with each other results <- bst$record_evals[["valid"]] expect_true(abs(results[["constant_metric"]][["eval"]][[1L]] - CONSTANT_METRIC_VALUE) < TOLERANCE) expect_named(results, "constant_metric") }) test_that("If first_metric_only is TRUE, gpb.cv() decides to stop early based on only the first metric", { set.seed(708L) nrounds <- 10L nfolds <- 5L early_stopping_rounds <- 3L increasing_metric_starting_value <- get(ACCUMULATOR_NAME, envir = ACCUMULATOR_ENVIRONMENT) capture.output( bst <- gpb.cv( params = list( objective = "regression" , metric = "None" , early_stopping_rounds = early_stopping_rounds , first_metric_only = TRUE ) , data = DTRAIN_RANDOM_REGRESSION , nfold = nfolds , nrounds = nrounds , valids = list( "valid1" = DVALID_RANDOM_REGRESSION ) , eval = list( .increasing_metric , .constant_metric ) ) ,file='NUL') # Only the two functions provided to "eval" should have been evaluated expect_named(bst$record_evals[["valid"]], c("increasing_metric", "constant_metric")) # all 10 iterations should happen, and the best_iter should be the final one expect_equal(bst$best_iter, nrounds) # best_score should be taken from "increasing_metric" # # this expected value looks magical and confusing, but it's because # evaluation metrics are averaged over all folds. # # consider 5-fold CV with a metric that adds 0.1 to a global accumulator # each time it's called # # * iter 1: [0.1, 0.2, 0.3, 0.4, 0.5] (mean = 0.3) # * iter 2: [0.6, 0.7, 0.8, 0.9, 1.0] (mean = 1.3) # * iter 3: [1.1, 1.2, 1.3, 1.4, 1.5] (mean = 1.8) # cv_value <- increasing_metric_starting_value + mean(seq_len(nfolds) / 10.0) + (nrounds - 1L) * 0.1 * nfolds expect_equal(bst$best_score, cv_value) # early stopping should not have happened. Even though constant_metric # had 9 consecutive iterations with no improvement, it is ignored because of # first_metric_only = TRUE expect_equal( length(bst$record_evals[["valid"]][["constant_metric"]][["eval"]]) , nrounds ) expect_equal( length(bst$record_evals[["valid"]][["increasing_metric"]][["eval"]]) , nrounds ) }) test_that("early stopping works with gpb.cv()", { set.seed(708L) nrounds <- 10L nfolds <- 5L early_stopping_rounds <- 3L increasing_metric_starting_value <- get(ACCUMULATOR_NAME, envir = ACCUMULATOR_ENVIRONMENT) capture.output( bst <- gpb.cv( params = list( objective = "regression" , metric = "None" , early_stopping_rounds = early_stopping_rounds , first_metric_only = TRUE ) , data = DTRAIN_RANDOM_REGRESSION , nfold = nfolds , nrounds = nrounds , valids = list( "valid1" = DVALID_RANDOM_REGRESSION ) , eval = list( .constant_metric , .increasing_metric ) ) , file='NUL') # only the two functions provided to "eval" should have been evaluated expect_named(bst$record_evals[["valid"]], c("constant_metric", "increasing_metric")) # best_iter should be based on the first metric. Since constant_metric # never changes, its first iteration was the best oone expect_equal(bst$best_iter, 1L) # best_score should be taken from the first metri expect_equal(bst$best_score, 0.2) # early stopping should have happened, since constant_metric was the first # one passed to eval and it will not improve over consecutive iterations # # note that this test is identical to the previous one, but with the # order of the eval metrics switched expect_equal( length(bst$record_evals[["valid"]][["constant_metric"]][["eval"]]) , early_stopping_rounds + 1L ) expect_equal( length(bst$record_evals[["valid"]][["increasing_metric"]][["eval"]]) , early_stopping_rounds + 1L ) }) context("linear learner") test_that("gpb.train() fit on linearly-relatead data improves when using linear learners", { set.seed(708L) .new_dataset <- function() { X <- matrix(rnorm(100L), ncol = 1L) return(gpb.Dataset( data = X , label = 2L * X + runif(nrow(X), 0L, 0.1) )) } params <- list( objective = "regression" , verbose = -1L , metric = "mse" , seed = 0L , num_leaves = 2L ) dtrain <- .new_dataset() bst <- gpb.train( data = dtrain , nrounds = 10L , params = params , valids = list("train" = dtrain) , verbose = 0 ) expect_true(gpboost:::gpb.is.Booster(bst)) dtrain <- .new_dataset() bst_linear <- gpb.train( data = dtrain , nrounds = 10L , params = modifyList(params, list(linear_tree = TRUE)) , valids = list("train" = dtrain) , verbose = 0 ) expect_true(gpboost:::gpb.is.Booster(bst_linear)) bst_last_mse <- bst$record_evals[["train"]][["l2"]][["eval"]][[10L]] bst_lin_last_mse <- bst_linear$record_evals[["train"]][["l2"]][["eval"]][[10L]] expect_true(bst_lin_last_mse < bst_last_mse) }) # test_that("gpb.train() w/ linear learner fails already-constructed dataset with linear=false", { # testthat::skip("Skipping this test because it causes issues for valgrind") # set.seed(708L) # params <- list( # objective = "regression" # , verbose = -1L # , metric = "mse" # , seed = 0L # , num_leaves = 2L # ) # # dtrain <- gpb.Dataset( # data = matrix(rnorm(100L), ncol = 1L) # , label = rnorm(100L) # ) # dtrain$construct() # expect_error({ # bst_linear <- gpb.train( # data = dtrain # , nrounds = 10L # , params = modifyList(params, list(linear_tree = TRUE)) # ) # }, regexp = "Cannot change linear_tree after constructed Dataset handle") # }) test_that("gpb.train() works with linear learners when Dataset has categorical features", { set.seed(708L) .new_dataset <- function() { X <- matrix(numeric(200L), nrow = 100L, ncol = 2L) X[, 1L] <- rnorm(100L) X[, 2L] <- sample(seq_len(4L), size = 100L, replace = TRUE) return(gpb.Dataset( data = X , label = 2L * X[, 1L] + runif(nrow(X), 0L, 0.1) )) } params <- list( objective = "regression" , verbose = -1L , metric = "mse" , seed = 0L , num_leaves = 2L , categorical_featurs = 1L ) dtrain <- .new_dataset() capture.output( bst <- gpb.train( data = dtrain , nrounds = 10L , params = params , valids = list("train" = dtrain) , verbose = 0 ) , file='NUL') expect_true(gpboost:::gpb.is.Booster(bst)) dtrain <- .new_dataset() capture.output( bst_linear <- gpb.train( data = dtrain , nrounds = 10L , params = modifyList(params, list(linear_tree = TRUE)) , valids = list("train" = dtrain) , verbose = 0 ) , file='NUL') expect_true(gpboost:::gpb.is.Booster(bst_linear)) bst_last_mse <- bst$record_evals[["train"]][["l2"]][["eval"]][[10L]] bst_lin_last_mse <- bst_linear$record_evals[["train"]][["l2"]][["eval"]][[10L]] expect_true(bst_lin_last_mse < bst_last_mse) }) context("interaction constraints") test_that("gpb.train() throws an informative error if interaction_constraints is not a list", { dtrain <- gpb.Dataset(train$data, label = train$label) params <- list(objective = "regression", interaction_constraints = "[1,2],[3]") expect_error({ bst <- gpboost( data = dtrain , params = params , nrounds = 2L ) }, "interaction_constraints must be a list") }) test_that(paste0("gpb.train() throws an informative error if the members of interaction_constraints ", "are not character or numeric vectors"), { dtrain <- gpb.Dataset(train$data, label = train$label) params <- list(objective = "regression", interaction_constraints = list(list(1L, 2L), list(3L))) capture.output( expect_error({ bst <- gpboost( data = dtrain , params = params , nrounds = 2L ) }, "every element in interaction_constraints must be a character vector or numeric vector") , file='NUL') }) test_that("gpb.train() throws an informative error if interaction_constraints contains a too large index", { dtrain <- gpb.Dataset(train$data, label = train$label) params <- list(objective = "regression", interaction_constraints = list(c(1L, length(colnames(train$data)) + 1L), 3L)) capture.output( expect_error({ bst <- gpboost( data = dtrain , params = params , nrounds = 2L ) }, "supplied a too large value in interaction_constraints") , file='NUL') }) test_that(paste0("gpb.train() gives same result when interaction_constraints is specified as a list of ", "character vectors, numeric vectors, or a combination"), { set.seed(1L) dtrain <- gpb.Dataset(train$data, label = train$label) params <- list(objective = "regression", interaction_constraints = list(c(1L, 2L), 3L)) capture.output( bst <- gpboost( data = dtrain , params = params , nrounds = 2L ) , file='NUL') pred1 <- bst$predict(test$data) cnames <- colnames(train$data) params <- list(objective = "regression", interaction_constraints = list(c(cnames[[1L]], cnames[[2L]]), cnames[[3L]])) capture.output( bst <- gpboost( data = dtrain , params = params , nrounds = 2L ) , file='NUL') pred2 <- bst$predict(test$data) params <- list(objective = "regression", interaction_constraints = list(c(cnames[[1L]], cnames[[2L]]), 3L)) capture.output( bst <- gpboost( data = dtrain , params = params , nrounds = 2L ) , file='NUL') pred3 <- bst$predict(test$data) expect_equal(pred1, pred2) expect_equal(pred2, pred3) }) test_that(paste0("gpb.train() gives same results when using interaction_constraints and specifying colnames"), { set.seed(1L) dtrain <- gpb.Dataset(train$data, label = train$label) params <- list(objective = "regression", interaction_constraints = list(c(1L, 2L), 3L)) capture.output( bst <- gpboost( data = dtrain , params = params , nrounds = 2L ) , file='NUL') pred1 <- bst$predict(test$data) new_colnames <- paste0(colnames(train$data), "_x") params <- list(objective = "regression" , interaction_constraints = list(c(new_colnames[1L], new_colnames[2L]), new_colnames[3L])) capture.output( bst <- gpboost( data = dtrain , params = params , nrounds = 2L , colnames = new_colnames ) , file='NUL') pred2 <- bst$predict(test$data) expect_equal(pred1, pred2) }) }