R Under development (unstable) (2024-09-21 r87186 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(glmm) Loading required package: trust Loading required package: mvtnorm Loading required package: Matrix Loading required package: parallel Loading required package: doParallel Loading required package: foreach Loading required package: iterators > data(BoothHobert) > > set.seed(1234) > #model with all weights at 1, no duplicate data points in data set > mod.mcml1<-glmm(y~0+x1,list(y~0+z1),varcomps.names=c("z1"), data=BoothHobert, family.glmm=bernoulli.glmm, m=10^2, doPQL=TRUE, debug=TRUE) > > #weights are determined from model (should be all 1) > if(is.null(mod.mcml1$weights)){ + wts <- rep(1, length(mod.mcml1$y)) + } else{ + wts <- mod.mcml1$weights + } > > ############################################ > getFamily<-glmm:::getFamily > #el without weights (in R) > elR <- + function(Y,X,eta,family.mcml,wts){ + family.mcml<-getFamily(family.mcml) + neta<-length(eta) + ntrials <- rep(1, neta) + + if(family.mcml$family.glmm=="bernoulli.glmm"){ + foo<-.C(glmm:::C_cum3,eta=as.double(eta),neta=as.integer(neta),type=as.integer(1), ntrials=as.integer(ntrials), wts=as.double(wts), cumout=double(1))$cumout + mu<-.C(glmm:::C_cp3,eta=as.double(eta),neta=as.integer(neta),type=as.integer(1), ntrials=as.integer(ntrials), cpout=double(neta))$cpout + cdub<-.C(glmm:::C_cpp3,eta=as.double(eta),neta=as.integer(neta),type=as.integer(1), ntrials=as.integer(ntrials), cppout=double(neta))$cppout + } + if(family.mcml$family.glmm=="poisson.glmm"){ + foo<-.C(glmm:::C_cum3,eta=as.double(eta),neta=as.integer(neta),type=as.integer(2), ntrials=as.integer(ntrials), wts=as.double(wts), cumout=double(1))$cumout + mu<-.C(glmm:::C_cp3,eta=as.double(eta),neta=as.integer(neta),type=as.integer(2),ntrials=as.integer(ntrials),cpout=double(neta))$cpout + cdub<-.C(glmm:::C_cpp3,eta=as.double(eta),neta=as.integer(neta),type=as.integer(2),ntrials=as.integer(ntrials),cppout=double(neta))$cppout + } + + value<-as.numeric(Y%*%eta-foo) + gradient<-t(X)%*%(Y-mu) + cdubmat<-diag(cdub) + hessian<-t(X)%*%(-cdubmat)%*%X + + list(value=value,gradient=gradient,hessian=hessian) + } > > #el with weights (in R) > NEWelR <- + function(Y,X,eta,family.mcml,wts){ + family.mcml<-getFamily(family.mcml) + neta<-length(eta) + ntrials <- rep(1, neta) + + + if(family.mcml$family.glmm=="bernoulli.glmm"){ + foo<-.C(glmm:::C_cum3,eta=as.double(eta),neta=as.integer(neta),type=as.integer(1), ntrials=as.integer(ntrials), wts=as.double(wts), cumout=double(1))$cumout + mu<-.C(glmm:::C_cp3,eta=as.double(eta),neta=as.integer(neta),type=as.integer(1), ntrials=as.integer(ntrials), cpout=double(neta))$cpout + cdub<-.C(glmm:::C_cpp3,eta=as.double(eta),neta=as.integer(neta),type=as.integer(1), ntrials=as.integer(ntrials), cppout=double(neta))$cppout + } + if(family.mcml$family.glmm=="poisson.glmm"){ + foo<-.C(glmm:::C_cum3, eta=as.double(eta), neta=as.integer(neta), type=as.integer(2), ntrials=as.integer(ntrials), wts=as.double(wts), cumout=double(1))$cumout + mu<-.C(glmm:::C_cp3, eta=as.double(eta), neta=as.integer(neta), type=as.integer(2), ntrials=as.integer(ntrials), cpout=double(neta))$cpout + cdub<-.C(glmm:::C_cpp3, eta=as.double(eta), neta=as.integer(neta), type=as.integer(2), ntrials=as.integer(ntrials), cppout=double(neta))$cppout + } + + wtsmat <- diag(wts) + wtX <- wtsmat%*%X + + value<-as.numeric(Y%*%wtsmat%*%eta-foo) + gradient<-t(wtX)%*%(Y-mu) + cdubmat<-diag(cdub) + hessian<-t(wtX)%*%(-cdubmat)%*%X + + list(value=value,gradient=gradient,hessian=hessian) + } > > ######################################################## > #compare elR and NEWelR for weights all equal 1: to make sure elR and NEWelR work the same with no weighting scheme > eta1<-rep(2,150) > ntrials <- rep(1, 150) > mod.mcml<-mod.mcml1 > thatALL1<-elR(mod.mcml$y,mod.mcml$x,eta1,family.mcml=bernoulli.glmm, wts=wts) > thisALL1 <- NEWelR(mod.mcml$y,mod.mcml$x,eta1,family.mcml=bernoulli.glmm, wts=wts) > all.equal(as.numeric(thatALL1$value),as.numeric(thisALL1$value)) [1] TRUE > all.equal(as.numeric(thatALL1$gradient),as.numeric(thisALL1$gradient)) [1] TRUE > all.equal(as.numeric(thatALL1$hessian),as.numeric(thisALL1$hessian)) [1] TRUE > > #compare NEWelR and elc for weights all equal 1: to make sure elc and NEWelR work the same with no weighting scheme > thoseALL1<-.C(glmm:::C_elc, as.double(mod.mcml$y), as.double(mod.mcml$x), as.integer(nrow(mod.mcml$x)), as.integer(ncol(mod.mcml$x)), as.double(eta1), as.integer(1), ntrials=as.integer(ntrials), wts=as.double(rep(1,150)), value=double(1), gradient=double(ncol(mod.mcml$x)), hessian=double((ncol(mod.mcml$x)^2))) > all.equal(as.numeric(thoseALL1$value),as.numeric(thisALL1$value)) [1] TRUE > all.equal(as.numeric(thoseALL1$gradient),as.numeric(thisALL1$gradient)) [1] TRUE > all.equal(as.numeric(thoseALL1$hessian),as.numeric(thisALL1$hessian)) [1] TRUE > > #finite differences for NEWelR, weights all 1 > del<- 10^-9 > thisdel <- NEWelR(mod.mcml$y,mod.mcml$x,eta1+del,family.mcml=bernoulli.glmm, wts=wts) > > all.equal(as.vector(thisALL1$gradient*del),thisdel$value-thisALL1$value) [1] TRUE > all.equal(as.vector(thisALL1$hessian*del),as.vector(thisdel$gradient-thisALL1$gradient)) [1] TRUE > > #finite differences for elc, weights all 1 > thosedel <- .C(glmm:::C_elc, as.double(mod.mcml$y), as.double(mod.mcml$x), as.integer(nrow(mod.mcml$x)), as.integer(ncol(mod.mcml$x)), as.double(eta1+del), as.integer(1), ntrials=as.integer(ntrials), wts=as.double(rep(1,150)), value=double(1), gradient=double(ncol(mod.mcml$x)), hessian=double((ncol(mod.mcml$x)^2))) > all.equal(as.vector(thoseALL1$gradient*del),thosedel$value-thoseALL1$value) [1] TRUE > all.equal(as.vector(thoseALL1$hessian*del),as.vector(thosedel$gradient-thoseALL1$gradient)) [1] TRUE > > #compare elc to elval, weights all 1: value should be the same > elvalout<-.C(glmm:::C_elval, as.double(mod.mcml$y), as.integer(nrow(mod.mcml$x)), as.integer(ncol(mod.mcml$x)), as.double(eta1), as.integer(1),ntrials=as.integer(ntrials), wts=as.double(rep(1,150)), value=double(1)) > all.equal(as.numeric(thoseALL1$value),elvalout$value) [1] TRUE > > #compare elc to elGH, weights all 1: gradient and hessian should be the same > elGHout<-.C(glmm:::C_elGH,as.double(mod.mcml$y),as.double(mod.mcml$x),as.integer(nrow(mod.mcml$x)),as.integer(ncol(mod.mcml$x)),as.double(eta1),as.integer(1), ntrials=as.integer(ntrials), wts=as.double(rep(1,150)), gradient=double(ncol(mod.mcml$x)),hessian=double((ncol(mod.mcml$x)^2))) > all.equal(as.numeric(thoseALL1$gradient),elGHout$gradient) [1] TRUE > all.equal(as.numeric(thoseALL1$hessian),elGHout$hessian) [1] TRUE > > #BoothHobert with 151 data points instead of 150 (150th data point duplicated) > BoothHobertDub <- rbind(BoothHobert, BoothHobert[nrow(BoothHobert),]) > > eta2<-rep(2,151) > ntrials <- rep(1, 151) > set.seed(1234) > #model using duplicated data, all weights are 1 > mod.mcml2<-glmm(y~0+x1,list(y~0+z1),varcomps.names=c("z1"), data=BoothHobertDub, family.glmm=bernoulli.glmm, m=10^2, doPQL=TRUE, debug=TRUE) > > #151 weights (all 1) > if(is.null(mod.mcml2$weights)){ + wts <- rep(1, length(mod.mcml2$y)) + } else{ + wts <- mod.mcml2$weights + } > > #compare elR with BoothHobertDub and all weights 1 versus NEWelR with BoothHobert and first 149 wights 1 and weight 150 as 2 > this2<-NEWelR(mod.mcml$y,mod.mcml$x,eta1,family.mcml=bernoulli.glmm, wts=c(rep(1,149),2)) > that2 <- elR(mod.mcml2$y,mod.mcml2$x,eta2,family.mcml=bernoulli.glmm, wts=wts) > all.equal(as.numeric(that2$value),as.numeric(this2$value)) [1] TRUE > all.equal(as.numeric(that2$gradient),as.numeric(this2$gradient)) [1] TRUE > all.equal(as.numeric(that2$hessian),as.numeric(this2$hessian)) [1] TRUE > > #compare NEWelR with BoothHobert and first 149 wights 1 and weight 150 as 2 versus elc with BoothHobert and first 149 wights 1 and weight 150 as 2 > those2 <- .C(glmm:::C_elc, as.double(mod.mcml$y), as.double(mod.mcml$x), as.integer(nrow(mod.mcml$x)), as.integer(ncol(mod.mcml$x)), as.double(eta1), as.integer(1), ntrials=as.integer(ntrials), wts=as.double(c(rep(1,149),2)), value=double(1), gradient=double(ncol(mod.mcml$x)), hessian=double((ncol(mod.mcml$x)^2))) > all.equal(as.numeric(those2$value),as.numeric(this2$value)) [1] TRUE > all.equal(as.numeric(those2$gradient),as.numeric(this2$gradient)) [1] TRUE > all.equal(as.numeric(those2$hessian),as.numeric(this2$hessian)) [1] TRUE > > proc.time() user system elapsed 4.34 0.53 8.43