#check objfun using finite differences library(glmm) data(BoothHobert) clust <- makeCluster(2) set.seed(1234) out<-glmm(y~0+x1,list(y~0+z1),varcomps.names=c("z1"),data=BoothHobert, family.glmm=bernoulli.glmm,m=50,doPQL=FALSE,debug=TRUE, cluster=clust) vars <- new.env(parent = emptyenv()) debug<-out$debug vars$nu.pql<-debug$nu.pql beta.pql<-debug$beta.pql vars$family.glmm<-out$family.glmm vars$umat<-debug$umat vars$newm <- nrow(vars$umat) vars$u.star<-debug$u.star vars$ntrials<- rep(1, length(out$y)) D.star.inv <- Dstarnotsparse <- vars$D.star <- as.matrix(debug$D.star) vars$m1 <- debug$m1 m2 <- debug$m2 m3 <- debug$m3 vars$zeta <- 5 vars$cl <- out$cluster registerDoParallel(vars$cl) #making cluster usable with foreach vars$no_cores <- length(vars$cl) vars$mod.mcml<-out$mod.mcml getEk<-glmm:::getEk addVecs<-glmm:::addVecs genRand<-glmm:::genRand simulate <- function(vars, Dstarnotsparse, m2, m3, beta.pql, D.star.inv){ #generate m1 from t(0,D*) if(vars$m1>0) genData<-rmvt(ceiling(vars$m1/vars$no_cores),sigma=Dstarnotsparse,df=vars$zeta,type=c("shifted")) if(vars$m1==0) genData<-NULL #generate m2 from N(u*,D*) if(m2>0) genData2<-genRand(vars$u.star,vars$D.star,ceiling(m2/vars$no_cores)) if(m2==0) genData2<-NULL #generate m3 from N(u*,(Z'c''(Xbeta*+zu*)Z+D*^{-1})^-1) if(m3>0){ Z=do.call(cbind,vars$mod.mcml$z) eta.star<-as.vector(vars$mod.mcml$x%*%beta.pql+Z%*%vars$u.star) if(vars$family.glmm$family.glmm=="bernoulli.glmm") {cdouble<-vars$family.glmm$cpp(eta.star)} if(vars$family.glmm$family.glmm=="poisson.glmm"){cdouble<-vars$family.glmm$cpp(eta.star)} if(vars$family.glmm$family.glmm=="binomial.glmm"){cdouble<-vars$family.glmm$cpp(eta.star, vars$ntrials)} #still a vector cdouble<-Diagonal(length(cdouble),cdouble) Sigmuh.inv<- t(Z)%*%cdouble%*%Z+D.star.inv Sigmuh<-solve(Sigmuh.inv) genData3<-genRand(vars$u.star,Sigmuh,ceiling(m3/vars$no_cores)) } if(m3==0) genData3<-NULL # #these are from distribution based on data # if(distrib=="tee")genData<-genRand(sigma.gen,s.pql,mod.mcml$z,m1,distrib="tee",gamm) # if(distrib=="normal")genData<-genRand(sigma.pql,s.pql,mod.mcml$z,m1,distrib="normal",gamm) # #these are from standard normal # ones<-rep(1,length(sigma.pql)) # zeros<-rep(0,length(s.pql)) # genData2<-genRand(ones,zeros,mod.mcml$z,m2,distrib="normal",gamm) umat<-rbind(genData,genData2,genData3) m <- nrow(umat) list(umat=umat, m=m, Sigmuh.inv=Sigmuh.inv) } clusterSetRNGStream(vars$cl, 1234) clusterExport(vars$cl, c("vars", "Dstarnotsparse", "m2", "m3", "beta.pql", "D.star.inv", "simulate", "genRand"), envir = environment()) #installing variables on each core noprint <- clusterEvalQ(vars$cl, umatparams <- simulate(vars=vars, Dstarnotsparse=Dstarnotsparse, m2=m2, m3=m3, beta.pql=beta.pql, D.star.inv=D.star.inv)) vars$nbeta <- 1 vars$p1=vars$p2=vars$p3=1/3 if(is.null(out$weights)){ wts <- rep(1, length(out$y)) } else{ wts <- out$weights } vars$wts <- as.vector(wts) par<-c(6,1.5) del<-rep(10^-9,2) objfun<-glmm:::objfun umats <- clusterEvalQ(vars$cl, umatparams$umat) umat <- Reduce(rbind, umats) Sigmuh.invs <- clusterEvalQ(vars$cl, umatparams$Sigmuh.inv) Sigmuh.inv <- Sigmuh.invs[[1]] Sigmuh <- solve(Sigmuh.inv) # define a few things that will be used for finite differences lth<-objfun(par=par, vars=vars) lthdel<-objfun(par=par+del, vars=vars) all.equal(as.vector(lth$gradient%*%del),lthdel$value-lth$value) all.equal(as.vector(lth$hessian%*%del),lthdel$gradient-lth$gradient) #see exactly how big the difference is #as.vector(lth$gradient%*%del)-(lthdel$value-lth$value) #as.vector(lth$hessian%*%del)-(lthdel$gradient-lth$gradient) #we know these differences are small when we compare it to the actual values # lthdel$value-lth$value # as.vector(lth$gradient%*%del) # as.vector(lth$hessian%*%del) # lthdel$gradient-lth$gradient ########################################## ##### to make sure that the objfun function is correct, compare it against the version without any C code. here is objfun without c: objfunNOC <- function(par,nbeta, nu.pql,umat, u.star=u.star, mod.mcml,family.glmm, cache,gamm,p1,p2,p3, D.star, Sigmuh, zeta, wts){ #print(par) beta<-par[1:nbeta] nu<-par[-(1:nbeta)] D<-nu*diag(10) D.inv<-(1/nu)*diag(10) m<-nrow(umat) if (!missing(cache)) stopifnot(is.environment(cache)) if(missing(cache)) cache<-new.env(parent = emptyenv()) if(sum(nu<=0)>0){ out<-list(value=-Inf,gradient=rep(1,length(par)),hessian=as.matrix(c(rep(1,length(par)^2)),nrow=length(par))) return(out) } Z=do.call(cbind,mod.mcml$z) eta<-b<-rep(0,m) lfu<-lfyu<-list(rep(c(0,0,0),m)) lfu.twid<-matrix(data=NA,nrow=m,ncol=4) D.star.inv<-solve(D.star) Sigmuh.inv<-solve(Sigmuh) Dstinvdiag<-diag(D.star.inv) tconst<-tconstant(zeta,nrow(D.star.inv),Dstinvdiag) #for each simulated random effect vector for(k in 1:m){ Uk<-umat[k,] #use the simulated vector as our random effect vec eta<-mod.mcml$x%*%beta+Z%*%Uk # calculate eta using it zeros<-rep(0,length(Uk)) #log f_theta(u_k) lfu[[k]]<-distRand(nu,Uk,mod.mcml$z,zeros) #log f_theta(y|u_k) lfyu[[k]]<-elR(mod.mcml$y,mod.mcml$x,eta,family.glmm) #log f~_theta(u_k) lfu.twid[k,1]<-tdist2(tconst,Uk,D.star.inv,zeta=zeta,myq=nrow(D.star.inv)) lfu.twid[k,2]<-distRandGeneral(Uk,u.star,D.star.inv) lfu.twid[k,3]<-distRandGeneral(Uk,u.star,Sigmuh.inv) tempmax<-max(lfu.twid[k,1:3]) blah<-exp(lfu.twid[k,1:3]-tempmax) pea<-c(p1,p2,p3) qux<-pea%*%blah lfu.twid[k,4]<-tempmax+log(qux) b[k]<-as.numeric(lfu[[k]]$value)+as.numeric(lfyu[[k]]$value)-lfu.twid[k,4] } a<-max(b) thing<-exp(b-a) value<-a-log(m)+log(sum(thing)) v<-thing/sum(thing) #bk are log weights cache$weights<-exp(b) Gpiece<-matrix(data=NA,nrow=nrow(umat),ncol=length(par)) #lfuky<-NA for(k in 1:nrow(umat)){ Gpiece[k,]<-c(lfyu[[k]]$gradient,lfu[[k]]$gradient)*v[k] #lfuky[k]<-c(lfyu[[k]]$gradient,lfu[[k]]$gradient) #Gpiece[k,]<-lfuky[k]*v[k] } G<-apply(Gpiece,2,sum) #Hessian has three pieces: panda, lobster, GGT panda.list<-list() for(k in 1:nrow(umat)){ panda.list[[k]]<-c(lfyu[[k]]$gradient,lfu[[k]]$gradient)%*%t(c(lfyu[[k]]$gradient,lfu[[k]]$gradient))*v[[k]] } panda<-addMats(panda.list) lobster.list<-list() for(k in 1:nrow(umat)){ mat1<-lfyu[[k]]$hessian mat2<-lfu[[k]]$hessian d1<-nrow(mat1) d2<-nrow(mat2) newmat<-matrix(data=0,nrow=d1+d2,ncol=d1+d2) newmat[1:d1,1:d1]<-mat1 here<-d1+1 there<-d1+d2 newmat[here:there,here:there]<-mat2 lobster.list[[k]]<-newmat*v[k] } lobster<-addMats(lobster.list) hessian<-lobster+panda-G%*%t(G) list(value=value,gradient=G,hessian=hessian) } #here is el without C elR <- function(Y,X,eta,family.mcml){ family.mcml<-getFamily(family.mcml) neta<-length(eta) ntrials <- rep(1, neta) if(family.mcml$family.glmm=="bernoulli.glmm"){ foo<-.C(glmm:::C_cum3,eta=as.double(eta),neta=as.integer(neta),type=as.integer(1),ntrials=as.integer(ntrials),wts=as.double(wts),cumout=double(1))$cumout mu<-.C(glmm:::C_cp3,eta=as.double(eta),neta=as.integer(neta),type=as.integer(1),ntrials=as.integer(ntrials),cpout=double(neta))$cpout cdub<-.C(glmm:::C_cpp3,eta=as.double(eta),neta=as.integer(neta),type=as.integer(1),ntrials=as.integer(ntrials),cppout=double(neta))$cppout } if(family.mcml$family.glmm=="poisson.glmm"){ foo<-.C(glmm:::C_cum3,eta=as.double(eta),neta=as.integer(neta),type=as.integer(2),ntrials=as.integer(ntrials),wts=as.double(wts),cumout=double(1))$cumout mu<-.C(glmm:::C_cp3,eta=as.double(eta),neta=as.integer(neta),type=as.integer(2),ntrials=as.integer(ntrials),cpout=double(neta))$cpout cdub<-.C(glmm:::C_cpp3,eta=as.double(eta),neta=as.integer(neta),type=as.integer(2),ntrials=as.integer(ntrials),cppout=double(neta))$cppout } value<-as.numeric(Y%*%eta-foo) gradient<-t(X)%*%(Y-mu) cdubmat<-diag(cdub) hessian<-t(X)%*%(-cdubmat)%*%X list(value=value,gradient=gradient,hessian=hessian) } #here are some other functions we'll need to compare objfun and objfunNOC getFamily<-glmm:::getFamily addMats<-glmm:::addMats tdist2<-function(tconst,u, Dstarinv,zeta,myq){ inside<-1+t(u)%*%Dstarinv%*%u/zeta logft<-tconst - ((zeta+myq)/2)*log(inside) as.vector(logft) } tconstant<-glmm:::tconstant distRandGeneral<-function(uvec,mu,Sigma.inv){ logDetSigmaInv<-sum(log(eigen(Sigma.inv,symmetric=TRUE)$values)) umu<-uvec-mu piece2<-t(umu)%*%Sigma.inv%*%umu out<-as.vector(.5*(logDetSigmaInv-piece2)) const<-length(uvec)*.5*log(2*pi) out<-out-const out } distRand <- function(nu,U,z.list,mu){ # T=number variance components T<-length(z.list) #nrandom is q_t nrand<-lapply(z.list,ncol) nrandom<-unlist(nrand) totnrandom<-sum(nrandom) mu.list<-U.list<-NULL if(T==1) { U.list[[1]]<-U mu.list[[1]]<-mu } if(T>1){ U.list[[1]]<-U[1:nrandom[1]] mu.list[[1]]<-mu[1:nrandom[1]] for(t in 2:T){ thing1<-sum(nrandom[1:t-1])+1 thing2<-sum(nrandom[1:t]) U.list[[t]]<-U[thing1:thing2] mu.list[[t]]<-mu[thing1:thing2] } } val<-gradient<-Hessian<-rep(0,T) #for each variance component for(t in 1:T){ you<-as.vector(U.list[[t]]) mew<-as.vector(mu.list[[t]]) Umu<-(you-mew)%*%(you-mew) val[t]<- -length(U)*log(2*pi)/2+as.numeric(-.5*nrandom[t]*log(nu[t])-Umu/(2*nu[t])) gradient[t]<- -nrandom[t]/(2*nu[t])+Umu/(2*(nu[t])^2) Hessian[t]<- nrandom[t]/(2*(nu[t])^2)- Umu/((nu[t])^3) } value<-sum(val) if(T>1) hessian<-diag(Hessian) if(T==1) hessian<-matrix(Hessian,nrow=1,ncol=1) list(value=value,gradient=gradient,hessian=hessian) } #finally, compare objfun and objfunNOC for B+H example that<-objfunNOC(par=par, nbeta=1, nu.pql=vars$nu.pql, umat=umat, u.star=vars$u.star, mod.mcml=vars$mod.mcml, family.glmm=vars$family.glmm,p1=vars$p1,p2=vars$p2,p3=vars$p3, Sigmuh=Sigmuh,D.star=vars$D.star, zeta=vars$zeta,wts=vars$wts) all.equal(that,lth) stopCluster(clust)