#going to test el for the Booth and Hobert example library(glmm) data(BoothHobert) clust <- makeCluster(2) set.seed(1234) mod.mcml1<-glmm(y~0+x1,list(y~0+z1),varcomps.names=c("z1"), data=BoothHobert, family.glmm=bernoulli.glmm, m=21, doPQL=TRUE, debug=TRUE, cluster=clust) mod.mcml<-mod.mcml1$mod.mcml z<-mod.mcml$z[[1]] x<-mod.mcml$x y<-mod.mcml$y stuff<-mod.mcml1$debug beta.pql<-stuff$beta.pql nu.pql<-stuff$nu.pql u.pql<-u.star<-stuff$u.star umat<-stuff$umat family.glmm<-bernoulli.glmm objfun<-glmm:::objfun getEk<-glmm:::getEk addVecs<-glmm:::addVecs ############################################ #this should be the same as el getFamily<-glmm:::getFamily elR <- function(Y,X,eta,family.mcml,wts){ family.mcml<-getFamily(family.mcml) neta<-length(eta) ntrials <- rep(1, neta) if(family.mcml$family.glmm=="bernoulli.glmm"){ foo<-.C(glmm:::C_cum3,eta=as.double(eta),neta=as.integer(neta),type=as.integer(1), ntrials=as.integer(ntrials), wts=as.double(wts), cumout=double(1))$cumout mu<-.C(glmm:::C_cp3,eta=as.double(eta),neta=as.integer(neta),type=as.integer(1), ntrials=as.integer(ntrials), cpout=double(neta))$cpout cdub<-.C(glmm:::C_cpp3,eta=as.double(eta),neta=as.integer(neta),type=as.integer(1), ntrials=as.integer(ntrials), cppout=double(neta))$cppout } if(family.mcml$family.glmm=="poisson.glmm"){ foo<-.C(glmm:::C_cum3,eta=as.double(eta),neta=as.integer(neta),type=as.integer(2), ntrials=as.integer(ntrials), wts=as.double(wts), cumout=double(1))$cumout mu<-.C(glmm:::C_cp3,eta=as.double(eta),neta=as.integer(neta),type=as.integer(2),ntrials=as.integer(ntrials),cpout=double(neta))$cpout cdub<-.C(glmm:::C_cpp3,eta=as.double(eta),neta=as.integer(neta),type=as.integer(2),ntrials=as.integer(ntrials),cppout=double(neta))$cppout } value<-as.numeric(Y%*%eta-foo) gradient<-t(X)%*%(Y-mu) cdubmat<-diag(cdub) hessian<-t(X)%*%(-cdubmat)%*%X list(value=value,gradient=gradient,hessian=hessian) } #compare elR and el.C for a value of eta neta <- 150 eta<-rep(2,neta) ntrials <- rep(1,neta) that<-elR(mod.mcml$y,mod.mcml$x,eta,family.mcml=bernoulli.glmm,wts=rep(1,length(mod.mcml$y))) this<-.C(glmm:::C_elc, as.double(mod.mcml$y), as.double(mod.mcml$x), as.integer(nrow(mod.mcml$x)), as.integer(ncol(mod.mcml$x)), as.double(eta), as.integer(1), as.integer(ntrials), wts=as.double(rep(1,length(mod.mcml$y))), value=double(1), gradient=double(ncol(mod.mcml$x)), hessian=double((ncol(mod.mcml$x)^2))) all.equal(as.numeric(that$value),this$value) all.equal(as.numeric(that$gradient),this$gradient) all.equal(as.numeric(that$hessian),this$hessian) #compare to elval elvalout<-.C(glmm:::C_elval, as.double(mod.mcml$y), as.integer(nrow(mod.mcml$x)), as.integer(ncol(mod.mcml$x)), as.double(eta), as.integer(1), as.integer(ntrials), wts=as.double(rep(1,length(mod.mcml$y))), value=double(1)) all.equal(as.numeric(that$value),elvalout$value) #compare to elGH elGHout<-.C(glmm:::C_elGH,as.double(mod.mcml$y),as.double(mod.mcml$x),as.integer(nrow(mod.mcml$x)),as.integer(ncol(mod.mcml$x)),as.double(eta),as.integer(1), as.integer(ntrials), wts=as.double(rep(1,length(mod.mcml$y))), gradient=double(ncol(mod.mcml$x)),hessian=double((ncol(mod.mcml$x)^2))) all.equal(as.numeric(that$gradient),elGHout$gradient) all.equal(as.numeric(that$hessian),elGHout$hessian) stopCluster(clust)