stopifnot(require("testthat"), require("glmmTMB"), require("lme4")) source(system.file("test_data/glmmTMB-test-funs.R", package="glmmTMB", mustWork=TRUE)) data(sleepstudy, cbpp, package = "lme4") ## fsleepstudy and fitted models come from inst/test_data/models.rda ## OR running inst/test_data/make_ex.R test_that("diag", { ## two formulations of diag and lme4 all give same log-lik expect_equal(logLik(fm_diag1),logLik(fm_diag2_lmer)) expect_equal(logLik(fm_diag1),logLik(fm_diag2)) }) test_that("cs_us", { ## for a two-level factor, compound symmetry and unstructured ## give same result expect_equal(logLik(fm_us1),logLik(fm_cs1)) expect_equal(logLik(fm_us1),logLik(fm_us1_lmer)) }) test_that("cs_homog", { ## *homogenous* compound symmetry vs. nested random effects expect_equal(logLik(fm_nest),logLik(fm_nest_lmer)) }) test_that("basic ar1", { vv <- VarCorr(fm_ar1)[["cond"]] cc <- cov2cor(vv[[2]]) expect_equal(cc[1,],cc[,1]) expect_equal(unname(cc[1,]), cc[1,2]^(0:(nrow(cc)-1))) }) ## change to something better behaved test_that("print ar1 (>1 RE)", { ## sim order of sampling rnorm() values changed with implementation of hetar1, so use stored sim ## ## fsleepstudy$sim <- simulate_new(~ 1 + (1|Subject) + ar1(row+0| Subject), ## newdata=fsleepstudy, ## newparams = list(beta=0, betadisp = 1, theta = c(1, 1, 1)), ## family = gaussian, ## seed = 101)[[1]] ## saveRDS(fsleepstudy$sim, file="../../inst/test_data/sim_ar1.rds",version=2) fsleepstudy$sim <- readRDS(system.file("test_data", "sim_ar1.rds", package="glmmTMB")) fm_ar2 <- glmmTMB(sim ~ 1 + (1|Subject) + ar1(row+0| Subject), fsleepstudy) cco <- gsub(" +"," ", trimws(capture.output(print(summary(fm_ar2),digits=2)))) expect_equal(cco[12:14], c("Subject (Intercept) 7.0 2.6", "Subject.1 row1 5.9 2.4 0.78 (ar1)", "Residual 8.1 2.8")) }) test_that("ar1 requires factor time", { skip_on_cran() expect_error(glmmTMB(Reaction ~ 1 + (1|Subject) + ar1(as.numeric(row)+0| Subject), fsleepstudy), "expects a single") ## works even when the factor is a weird/hard-to-recognize component expect_is(glmmTMB(Reaction ~ 1 + (1|Subject) + ar1(relevel(factor(row),"2")+0| Subject), fsleepstudy), "glmmTMB") }) ## FIXME: simpler to check formatVC() directly? get_vcout <- function(x, g="\\bSubject\\b") { cc <- capture.output(print(VarCorr(x))) cc1 <- grep(g, cc, value=TRUE, perl=TRUE) ss <- strsplit(cc1,"[^[:alnum:][:punct:]]+")[[1]] return(ss[nchar(ss)>0]) } test_that("varcorr_print", { skip_on_cran() ss <- get_vcout(fm_cs1) expect_equal(length(ss),5) expect_equal(ss[4:5],c("0.081","(cs)")) ss2 <- get_vcout(fm_ar1,g="\\bSubject.1\\b") expect_equal(length(ss2),5) expect_equal(ss2[4:5],c("0.873","(ar1)")) ## test case with two different size V-C set.seed(101) dd <- data.frame(y=rnorm(1000),c=factor(rep(1:2,500)), w=factor(rep(1:10,each=100)), s=factor(rep(1:10,100))) ## non-pos-def case (we don't care at the moment) m1 <- suppressWarnings(glmmTMB(y~c+(c|w)+(1|s),data=dd, family=gaussian)) cc <- squash_white(capture.output(print(VarCorr(m1),digits=2))) ## updated for var -> SD reparam expect_equal(cc, c("Conditional model:", "Groups Name Std.Dev. Corr", "w (Intercept) 9.6e-05", "c2 4.0e-06 0.99", "s (Intercept) 9.4e-06", "Residual 9.6e-01")) ## check that all std devs are being printed (GH #851) cc <- capture.output(VarCorr(fm_cs2)) expect_equal(length(cc), 7) expect_equal(length(grep("fDays", cc)), 2) }) ff <- system.file("test_data","cov_struct_order.rds",package="glmmTMB") if (nchar(ff)>0) { dat <- readRDS(ff) } else { set.seed(101) nb <- 100 ns <- nb*3 nt <- 100 cor <- .7 dat <- data.frame(Block = factor(rep(1:nb, each = ns/nb*nt)), Stand = factor(rep(1:ns, each = nt)), Time = rep(1:nt, times = ns), blockeff = rep(rnorm(nb, 0, .5), each = ns/nb*nt), standeff = rep(rnorm(ns, 0, .8), each = nt), resid = c(t(MASS::mvrnorm(ns, mu = rep(0, nt), Sigma = 1.2*cor^abs(outer(0:(nt-1),0:(nt-1),"-")))))) dat$y <- with(dat, 5 + blockeff + standeff + resid)+rnorm(nrow(dat), 0, .1) dat$Time <- factor(dat$Time) ## saveRDS(dat, file="../../inst/test_data/cov_struct_order.rds",version=2) } test_that("cov_struct_order", { skip_on_cran() fit1 <- glmmTMB(y ~ (1|Block) + (1|Stand)+ ar1(Time +0|Stand), data = dat) expect_equal(unname(fit1$fit$par), c(4.98852432, -2.11104196068295, -0.76452645, -0.24762133, 0.08879302, 1.00022657), tol=1e-3) }) test_that("hom vs het diag", { fmhomdiag <- glmmTMB(Reaction ~ Days + homdiag(Days| Subject), sleepstudy) expect_equal(c(VarCorr(fmhomdiag)$cond$Subject), c(69.4182616453357, 0, 0, 69.4182616453357), ## tolerance loosened for var -> SD reparameterization tolerance = 2e-4) }) test_that("het ar1", { skip_on_cran() sleepstudy$Days <- factor(sleepstudy$Days) sleepstudy$y <- simulate_new(~ 1 + (1|Subject) + hetar1(Days+0| Subject), newdata=sleepstudy, newparams = list(beta=0, betadisp = 1, theta = rep(1, 12)), family = gaussian, seed = 101)[[1]] suppressWarnings(fit1 <- glmmTMB(y ~ 1 + (1|Subject) + hetar1(Days+0| Subject), data=sleepstudy)) VarCorr(fit1) })