stopifnot(require("testthat"), require("glmmTMB")) sleepstudy <- transform(sleepstudy, DaysFac = factor(cut(Days,2)) ) ssNA <- transform(sleepstudy, Days = replace(Days,c(1,27,93,145), NA)) ssNA2 <- transform(sleepstudy, Days = replace(Days,c(2,49), NA)) data(cbpp, package = "lme4") set.seed(101) cbpp_zi <- cbpp cbpp_zi[sample(nrow(cbpp),size=15,replace=FALSE),"incidence"] <- 0 ## 'newdata' nd <- subset(sleepstudy, Subject=="308", select=-1) nd$Subject <- "new" nd$DaysFac <- "new" test_that("manual prediction of pop level pred", { prnd <- predict(fm2, newdata=nd, allow.new.levels=TRUE) expect_equal( as.numeric(prnd), fixef(fm2)$cond[1] + fixef(fm2)$cond[2] * nd$Days , tol=1e-10) }) test_that("population-level prediction", { prnd <- predict(fm2) expect_equal(length(unique(prnd)),180) prnd2 <- predict(fm2, re.form=~0) prnd3 <- predict(fm2, re.form=NA) expect_equal(prnd2,prnd3) expect_equal(length(unique(prnd2)),10) ## make sure we haven't messed up any internal structures ... prnd4 <- predict(fm2) expect_equal(prnd, prnd4) }) test_that("new levels of fixed effect factor", { skip_on_cran() g1 <- glmmTMB(Reaction ~ Days + Subject, sleepstudy) expect_error( predict(g1, nd), "Prediction is not possible for unknown fixed effects") }) test_that("new levels in RE term", { skip_on_cran() suppressWarnings(g2 <- glmmTMB(Reaction ~ us(DaysFac | Subject), sleepstudy)) expect_error( predict(g2, nd), "Prediction is not possible for terms") }) test_that("new levels in AR1 (OK)", { skip_on_cran() g3 <- glmmTMB(Reaction ~ ar1(DaysFac + 0| Subject), sleepstudy) expect_warning( predict(g3, nd), ## OK: AR1 does not introduce new parameters "Predicting new random effect levels") }) context("Predict two-column response case") test_that("two-column response", { skip_on_cran() fm <- glmmTMB( cbind(count,4) ~ mined, family=betabinomial, data=Salamanders) expect_equal(predict(fm, type="response"), c(0.05469247, 0.29269818)[Salamanders$mined] ) }) test_that("Prediction with dispformula=~0", { skip_on_cran() y <- 1:10 f <- glmmTMB(y ~ 1, dispformula=~0, data = NULL) expect_equal(predict(f), rep(5.5, 10)) }) ss <- sleepstudy fm2_ex <- update(fm2, data=ssNA, na.action=na.exclude) fm2_om <- update(fm2, data=ssNA, na.action=na.omit) pp_ex <- predict(fm2_ex) pp_om <- predict(fm2_om) test_that("NA values in predictions", { expect_equal(length(pp_ex),nrow(ssNA)) expect_true(all(is.na(pp_ex)==is.na(ssNA$Days))) expect_equal(length(pp_om),length(na.omit(ssNA$Days))) expect_true(!any(is.na(pp_om))) }) ## na.pass test_that("na.pass", { pp_ndNA <- predict(fm2,newdata=ssNA) expect(all(is.na(ssNA$Days)==is.na(pp_ndNA)), failure_message="NAs don't match with na.pass+predict") pp_ndNA2 <- predict(fm2,newdata=ssNA2) expect(all(is.na(ssNA2$Days)==is.na(pp_ndNA2)), failure_message="NAs don't match with na.pass+predict+newdata") }) ## na.omit test_that("na.omit", { pp_ndNA_om <- predict(fm2,newdata=ssNA,na.action=na.omit) expect_equal(length(pp_ndNA_om),sum(complete.cases(ssNA))) }) tmbm1 <- glmmTMB(cbind(incidence, size - incidence) ~ period + (1 | herd), data = cbpp, family = binomial) tmbm2 <- update(tmbm1,incidence/size ~ . , weights = size) test_that("different binomial specs: fitted & predicted agree", { expect_equal(fitted(tmbm1),fitted(tmbm2)) expect_equal(predict(tmbm1),predict(tmbm2)) }) ## context("zero-inflation prediction") g0_zi <- update(tmbm2, ziformula = ~period) un <- function(x) lapply(x,unname) mypred <- function(form,dd,cc,vv,linkinv=identity,mu.eta=NULL) { X <- model.matrix(form,dd) pred <- drop(X %*% cc) se <- drop(sqrt(diag(X %*% vv %*% t(X)))) if (!is.null(mu.eta)) se <- se*mu.eta(pred) pred <- linkinv(pred) return(un(list(fit=pred,se.fit=se))) } ## FIXME: predictions should have row names of data dd <- data.frame(unique(cbpp["period"]),size=1,herd=NA) ff <- make.link("logit") test_that("type='link'", { link_pred <- mypred(~period,dd,fixef(g0_zi)$cond,vcov(g0_zi)$cond) expect_equal(un(predict(g0_zi,newdata=dd,se.fit=TRUE)), link_pred) }) test_that("various types", { cond_pred <- mypred(~period,dd,fixef(g0_zi)$cond,vcov(g0_zi)$cond, ff$linkinv,ff$mu.eta) expect_equal(un(predict(g0_zi,newdata=dd,se.fit=TRUE,type="conditional")), cond_pred) zprob_pred <- mypred(~period,dd,fixef(g0_zi)$zi,vcov(g0_zi)$zi, ff$linkinv,ff$mu.eta) expect_equal(un(predict(g0_zi,newdata=dd,se.fit=TRUE,type="zprob")), zprob_pred) expect_equal(unname(predict(g0_zi,newdata=dd,se.fit=TRUE,type="response")$fit), cond_pred$fit*(1-zprob_pred$fit)) }) test_that("type='zlink'", { zlink_pred <- mypred(~period,dd,fixef(g0_zi)$zi,vcov(g0_zi)$zi) expect_equal(un(predict(g0_zi,newdata=dd,se.fit=TRUE,type="zlink")), zlink_pred) }) test_that("deprecated zitype parameter", { expect_warning(predict(g0_zi,newdata=dd,zitype="zprob")) }) ## context("complex bases") data("sleepstudy",package="lme4") nd <- data.frame(Days=0, Subject=factor("309", levels=levels(sleepstudy$Subject))) test_that("poly", { g1 <- glmmTMB(Reaction~poly(Days,3), sleepstudy) expect_equal(predict(g1, newdata=data.frame(Days=0)), 255.7690496, tolerance=1e-5) }) test_that("splines", { if (getRversion()>="3.5.1") { ## work around predict/predvars bug in 3.5.0 & previous versions g2 <- glmmTMB(Reaction~splines::ns(Days,5), sleepstudy) } else { library(splines) g2 <- glmmTMB(Reaction~ns(Days,5), sleepstudy) } expect_equal(predict(g2, newdata=data.frame(Days=0)),257.42672, tolerance=1e-5) }) test_that("scale", { skip_on_cran() g3 <- glmmTMB(Reaction~scale(Days), sleepstudy) expect_equal(predict(g3, newdata=data.frame(Days=0)), 251.40507651, tolerance=1e-5) }) test_that("poly_RE", { g1 <- glmmTMB(Reaction~(1|Subject) + poly(Days,3), sleepstudy) expect_equal(predict(g1, newdata=nd, allow.new.levels=TRUE), 178.1629812, tolerance=1e-5) }) test_that("splines_RE", { if (getRversion()>="3.5.1") { g2 <- glmmTMB(Reaction~(1|Subject) + splines::ns(Days,5), sleepstudy) } else { library(splines) g2 <- glmmTMB(Reaction~(1|Subject) + ns(Days,5), sleepstudy) } expect_equal(predict(g2, newdata=nd, allow.new.levels=TRUE), 179.7784754, tolerance=1e-5) }) test_that("scale_RE", { skip_on_cran() g3 <- glmmTMB(Reaction~(1|Subject) + scale(Days), sleepstudy) expect_equal(predict(g3, newdata=nd, allow.new.levels=TRUE), 173.83923026, tolerance=1e-5) }) test_that("complex bases in dispformula", { skip_on_cran() g4A <- glmmTMB(Reaction~1, sleepstudy) g4B <- glmmTMB(Reaction~1, disp=~poly(Days,2), sleepstudy) expect_equal(predict(g4A, newdata=nd, se.fit=TRUE), list(fit = 298.507945749154, se.fit = 4.18682101029576), tolerance=1e-5) expect_equal(predict(g4B, newdata=nd, se.fit=TRUE), list(fit = 283.656705454758, se.fit = 4.74204256781178), tolerance = 1e-6) }) test_that("fix_predvars works for I(x^2)", { skip_on_cran() ## GH512; @strengejacke set.seed(123) n <- 500 d <- data.frame( y = rbinom(n, size = 1, prob = .2), x = rnorm(n), site = sample(letters, size = n, replace = TRUE), area = sample(LETTERS[1:9], size = n, replace = TRUE) ) form <- y ~ x + I(x^2) + I(x^3) + (1 | area) m1 <- lme4::glmer(form, family = binomial("logit"), data = d) m2 <- glmmTMB(form, family = binomial("logit"), data = d) nd <- data.frame(x = c(-2, -1, 0, 1, 2), area = NA) p1 <- predict(m1, newdata = nd, type = "link", re.form = NA) p2 <- predict(m2, newdata = nd, type = "link") expect_equal(unname(p1),unname(p2), tolerance=1e-4) }) test_that("more predvars stuff (I()) (GH #853)", { set.seed(100) N <- 100 x1 <- rnorm(N) Y <- rpois(N, lambda = exp(x1)) df <- data.frame(Y=Y, x1=x1) ##Base model mod <- suppressWarnings(glmmTMB(Y ~ x1 + I((x1+10)^2) + I((x1+10)^3), data = df, family = "poisson")) p1 <- predict(mod, newdata = df, type = "response") expect_equal(fitted(mod), predict(mod, newdata = df, type = "response")) }) test_that("predvars with different ns() in fixed and disp (GH #845)", { library(splines) x <- glmmTMB( am ~ ns(wt, df = 3), dispformula = ~ ns(wt, df = 2), data = mtcars ) newdata <- data.frame( wt = seq(min(mtcars$wt), max(mtcars$wt), length.out = 3) ) expect_equal(predict(x, newdata = newdata), c(1.00149139390868, 0.367732526652086, 9.21516947505197e-06)) }) test_that("predvars with differing splines in fixed and RE (GH#632)", { library(splines) data(sleepstudy,package="lme4") form <- Reaction ~ ns(Days, df = 3) + (ns(Days, df = 2)|Subject) ## need better/non-default starting values after var -> SD param change m4 <- glmmTMB(form, data = sleepstudy, start = list(theta = c(3.28, 4.34, 3.79, 0, 0, 0))) m4B <- lme4::lmer(form, data = sleepstudy, REML = FALSE) nd <- data.frame(Days = 4:6, Subject = "372") predict(m4B, newdata = nd, re.form = NULL, type = "response") pp <- predict(m4, newdata = nd, re.form = NULL, type = "response") ppB <- predict(m4B, newdata = nd, re.form = NULL, type = "response") ## plot(Reaction ~ Days, data = subset(sleepstudy, Subject == "372")) ## points(4:6, pp, col = 2, pch = 16) ## ?? results change on var to SD switch for Gaussian model? expect_equal(pp, c(309.103652912868, 321.193466901353, 333.568337949647), tolerance = 1e-4) expect_equal(unname(ppB), pp, tolerance = 1e-4) }) test_that("contrasts carried over", { skip_on_cran() ## GH 439, @cvoeten iris2 <- transform(iris, grp=factor(c("a","b"))) contrasts(iris2$Species) <- contr.sum contrasts(iris2$grp) <- contr.sum mod1 <- glmmTMB(Sepal.Length ~ Species,iris) mod2 <- glmmTMB(Sepal.Length ~ Species,iris2) iris3 <- iris[1,] iris3$Species <- "extra" ## these are not *exactly* equal because of numeric differences ## when estimating parameters differently ... (?) expect_equal(predict(mod1),predict(mod2),tolerance=1e-6) ## make sure we actually imposed contrasts correctly/differently expect_false(isTRUE(all.equal(fixef(mod1)$cond,fixef(mod2)$cond))) expect_error(predict(mod1,newdata=iris2), "contrasts mismatch") expect_equal(predict(mod1,newdata=iris2,allow.new.levels=TRUE), predict(mod1,newdata=iris)) mod3 <- glmmTMB(Sepal.Length ~ 1|Species, iris) expect_equal(c(predict(mod3,newdata=data.frame(Species="ABC"), allow.new.levels=TRUE)), 5.843333, tolerance=1e-6) mod4 <- glmmTMB(Sepal.Length ~ grp + (1|Species), iris2) expect_equal(c(predict(mod4, newdata=data.frame(Species="ABC",grp="a"), allow.new.levels=TRUE)), 5.839998, tolerance=1e-6) ## works with char rather than factor in new group vble expect_equal(predict(mod3, newdata=iris3, allow.new.levels=TRUE), 5.843333, tolerance=1e-6) }) test_that("dispersion", { mod5 <- glmmTMB(Sepal.Length ~ Species, disp=~ Species, iris) expect_equal(length(unique(predict(mod5, type="disp"))), length(unique(iris$Species))) expect_equal(length(unique(predict(mod5, type="disp", se.fit=TRUE)$se.fit)), length(unique(iris$Species))) }) test_that("offset-only model (GH #625)", { skip_on_cran() owls_nb0 <- glmmTMB(SiblingNegotiation ~ offset(log(BroodSize)), family = nbinom2(), data=Owls) expect_equal(mean(predict(owls_nb0)), 1.88220473712677) }) test_that("fast prediction", { ## use tighter-than-default tolerances ## expect_equal(predict(fm2,fast=FALSE),predict(fm2,fast=TRUE), tolerance=1e-13) expect_equal(predict(fm2, type="response",fast=FALSE), predict(fm2, type="response", fast=TRUE), tolerance=1e-13) ## handling NAs etc. expect_equal(pp_ex, predict(fm2_ex, fast=FALSE)) }) test_that("inverse-link prediction", { skip_on_cran() ## example from John Maindonald (GH #696) ## this highlights a particular case where the prediction on the (cloglog) link scale ## is large (3.98), which leads to a prediction of 1.0 unless the cloglog-inverse-link ## function is clamped (as in make.link("cloglog")'s version) ffly <- read.csv(system.file("test_data", "ffly.csv", package="glmmTMB")) ffly$obs <- factor(ffly$obs) form1 <- cbind(Dead,Live)~0+trtGp/TrtTime+(1|obs)+(1|trtGpRep) ObsTMB.cll <- glmmTMB(form1, family=binomial(link="cloglog"), data=ffly) p0 <- predict(ObsTMB.cll, re.form=NA)[63] p0R <- make.link("cloglog")$linkinv(p0) p1 <- predict(ObsTMB.cll, re.form=NA, type="response")[63] expect_equal(p0R, p1) }) test_that("fast prediction not allowed with NA (correct errors)", { expect_error(predict(fm2, re.form=NA, fast=TRUE), "fast=TRUE is not compatible") expect_equal(predict(fm2, re.form=NA, fast=FALSE), predict(fm2, re.form=NA, fast=NULL)) }) test_that("zlink/zprob return appropriate values with non-ZI model (GH#798)", { p1 <- predict(fm2, type = "zlink") expect_equal(length(p1), nrow(sleepstudy)) expect_true(all(p1 == -Inf)) p2 <- predict(fm2, type = "zprob") expect_equal(length(p2), nrow(sleepstudy)) expect_true(all(p2 == 0)) }) test_that("correct conditional/response predictions for truncated distributions", { set.seed(42) N <- 100 df <- data.frame(p1 = rpois(N, 1), nb1 = rnbinom(N, mu = 1, size = 1), x = rnorm(N)) |> transform( ## zero-inflated versions zp1 = p1 * rbinom(N, size = 1, prob = 0.5), znb1 = nb1 * rbinom(N, size = 1, prob = 0.5), ## truncated versions (NAs will be dropped) tp1 = ifelse(p1 == 0, NA, p1), tnb1 = ifelse(nb1 == 0, NA, nb1)) f_zp1 <- glmmTMB(zp1 ~ x, zi= ~ 1, family=truncated_poisson(link="log"), data=df) f_znb1 <- update(f_zp1, znb1 ~ ., family = truncated_nbinom1) f_znb2 <- update(f_zp1, znb1 ~ ., family = truncated_nbinom2) testfun <- function(model, response, distrib) { zp1 <- predict(model, type="zprob") cm1 <- predict(model, type="conditional") mu1 <- predict(model, type="response") ## compute zero-trunc by hand eta <- predict(model, type = "link") cm2 <- exp(eta)/(1-distrib(0, exp(eta), sigma(model))) expect_equal(cm1, cm2) expect_equal(mu1, cm1*(1-zp1)) } ## versions of distrib functions that can be plugged into testfun() my_dpois <- function(x, lambda, ...) dpois(x, lambda) my_nb2 <- function(x, mu, size) dnbinom(x, mu = mu, size = size) my_nb1 <- function(x, mu, phi) { ## var = mu*(1+mu/k) = mu*(1+phi) -> phi = mu/k -> k = mu/phi dnbinom(x, mu = mu, size = mu/phi) } testfun(f_zp1, "zp1", my_dpois) testfun(f_znb2, "znb1", my_nb2) testfun(f_znb1, "znb1", my_nb1) }) test_that("predict warns about ignored args", { expect_warning(predict(fm2, bad_args = TRUE), "bad_args") }) ## GH #873 test_that("nzprob doesn't segfault", { skip_on_cran() model2 <- glmmTMB( count ~ cover + mined + (1 | site), ziformula = ~ cover + mined, family = truncated_poisson(), data = Salamanders ) pp <- stats::predict( model2, newdata = Salamanders, type = "link", re.form = NULL, allow.new.levels = FALSE ) expect_equal(head(pp, 3), c(0.465946249085321, 0.206712238705304, 0.133580349579438)) }) ## GH #873 continued test_that("nzprob computed for non-fast pred", { set.seed(101) dd <- data.frame(y = rpois(5, lambda = 1)) m1 <- glmmTMB( y ~ 1, ziformula = ~ 1, data = dd, family = truncated_poisson() ) expect_identical(predict(m1, type = "response"), predict(m1, type = "response", fast = FALSE)) ## non-pos-def Hessian, ignore m2 <- suppressWarnings(update(m1, family = truncated_nbinom1)) expect_identical(predict(m2, type = "response"), predict(m2, type = "response", fast = FALSE)) ## non-pos-def Hessian, ignore m2 <- suppressWarnings(update(m1, family = truncated_nbinom2)) ## need more data to fit compois, genpois dd2 <- data.frame(y = rpois(100, lambda = 1)) m2 <- update(m1, family = truncated_compois, data = dd2) expect_identical(predict(m2, type = "response"), predict(m2, type = "response", fast = FALSE)) ## suppress NA/NaN function eval warning m2 <- suppressWarnings(update(m1, family = truncated_genpois, data = dd2)) expect_identical(predict(m2, type = "response"), predict(m2, type = "response", fast = FALSE)) }) test_that("pop-level prediction with missing grouping vars (GH #923)", { fm20 <- glmmTMB(Reaction ~ 1 + (Days|Subject), sleepstudy) predict(fm20, re.form = NA, newdata = data.frame(matrix(ncol = 0, nrow=length(sleepstudy)))) expect_equal(predict(fm2, re.form = NA), predict(fm2, newdata = sleepstudy[c("Days")], re.form = NA)) ## suppress non-pos-def Hessian warning, this is a silly example fmnasty <- suppressWarnings( glmmTMB(Reaction ~ 1 + (log(Days+1)|Subject), sleepstudy) ) expect_equal(predict(fmnasty, re.form = NA), predict(fmnasty, newdata = data.frame(matrix(ncol=0, nrow = nrow(sleepstudy))), re.form = NA)) }) test_that("weights with attributes are OK", { data(iris) d <- as.data.frame(expand.grid( Species = unique(iris$Species), Petal.Width = 2, wg = NA )) set.seed(101) iris$wg <- abs(rnorm(nrow(iris), 1, 0.1)) attr(iris$wg, "label") <- "weighting variable" m <- glmmTMB( Petal.Length ~ Petal.Width + (1 | Species), weights = wg, data = iris ) p <- predict(m, newdata = d, re.form = NULL) expect_equal(head(p), c(3.35535960506176, 4.98184089632094, 5.50821757779119)) }) test_that("pearson resids of ZI models", { if (requireNamespace("pscl")) { data(bioChemists, package = "pscl") m <- glmmTMB::glmmTMB( art ~ fem + mar + kid5 + ment, ziformula = ~ kid5 + phd, family = poisson(), data = bioChemists ) expect_equal(sum(residuals(m, type = "pearson")^2), 1258.55399982061) } })