stopifnot(require("testthat"), require("glmmTMB")) ## drop (unimportant) info that may not match across versions drop_version <- function(obj) { obj$modelInfo$packageVersion <- NULL obj$modelInfo$family$initialize <- NULL ## updated initialization expressions obj$modelInfo$parallel <- NULL ## parallel component changed from int to list } expect_equal_nover <- function(x,y,...) { expect_equal(drop_version(x), drop_version(y), ...) } ## loaded by gt_load() in setup_makeex.R, but need to do this ## again to get it to work in devtools::check() environment (ugh) gm0 <- up2date(gm0) gm1 <- up2date(gm1) data(sleepstudy, cbpp, package = "lme4") data(quine, package="MASS") ## n.b. for test_that, this must be assigned within the global ## environment ... cbpp <<- transform(cbpp, prop = incidence/size, obs=factor(seq(nrow(cbpp)))) ## utility: hack/replace parts of the updated result that will ## be cosmetically different matchForm <- function(obj, objU, family=FALSE, fn = FALSE) { for(cmp in c("call","frame")) # <- more? objU[[cmp]] <- obj[[cmp]] ## Q: why are formulas equivalent but not identical? A: their environments may differ objU$modelInfo$allForm <- obj$modelInfo$allForm nm <- names(objU$modelInfo) objU$modelInfo$packageVersion <- packageVersion("glmmTMB") if (family) objU$modelInfo$family <- obj$modelInfo$family ## objective function/gradient may change between TMB versions if (fn) { for (f in c("fn","gr","he","retape","env","report","simulate")) { objU$obj[[f]] <- obj$obj[[f]] } } return(objU) } lm0 <- lm(Reaction~Days,sleepstudy) fm00 <- glmmTMB(Reaction ~ Days, sleepstudy) fm0 <- glmmTMB(Reaction ~ 1 + ( 1 | Subject), sleepstudy) fm1 <- glmmTMB(Reaction ~ Days + ( 1 | Subject), sleepstudy) fm2 <- glmmTMB(Reaction ~ Days + (Days| Subject), sleepstudy) fm3 <- glmmTMB(Reaction ~ Days + ( 1 | Subject) + (0+Days | Subject), sleepstudy) test_that("Basic Gaussian Sleepdata examples", { expect_is(fm00, "glmmTMB") expect_is(fm0, "glmmTMB") expect_is(fm1, "glmmTMB") expect_is(fm2, "glmmTMB") expect_is(fm3, "glmmTMB") expect_equal(fixef(fm00)[[1]],coef(lm0),tol=1e-5) expect_equal(sigma(fm00)*sqrt(nobs(fm00)/(df.residual(fm00)+1)), summary(lm0)$sigma,tol=1e-5) expect_equal(fixef(fm0)[[1]], c("(Intercept)" = 298.508), tolerance = .0001) expect_equal(fixef(fm1)[[1]], c("(Intercept)" = 251.405, Days = 10.4673), tolerance = .0001) expect_equal(fixef(fm2)$cond, fixef(fm1)$cond, tolerance = 1e-5)# seen 1.042 e-6 expect_equal(fixef(fm3)$cond, fixef(fm1)$cond, tolerance = 5e-6)# seen 2.250 e-7 expect_equal(head(ranef(fm0)$cond$Subject[,1],3), c(37.4881849228705, -71.5589277273216, -58.009085500647), tolerance=1e-5) ## test *existence* of summary method -- nothing else for now expect_is(suppressWarnings(summary(fm3)),"summary.glmmTMB") }) test_that("Update Gaussian", { skip_on_cran() ## call doesn't match (formula gets mangled?) ## timing different fm1u <- update(fm0, . ~ . + Days) expect_equal_nover(fm1, matchForm(fm1, fm1u, fn=TRUE)) }) test_that("Variance structures", { skip_on_cran() ## above: fm2 <- glmmTMB(Reaction ~ Days + (Days| Subject), sleepstudy) expect_is(fm2us <- glmmTMB(Reaction ~ Days + us(Days| Subject), sleepstudy), "glmmTMB") expect_is(fm2cs <- glmmTMB(Reaction ~ Days + cs(Days| Subject), sleepstudy), "glmmTMB") expect_is(fm2diag <- glmmTMB(Reaction ~ Days + diag(Days| Subject), sleepstudy), "glmmTMB") expect_equal(getME(fm2, "theta"), getME(fm2us,"theta")) ## FIXME: more here, compare results against lme4 ... }) test_that("Sleepdata Variance components", { expect_equal(c(unlist(VarCorr(fm3))), c(cond.Subject = 584.247907378213, cond.Subject.1 = 33.6332741779585), tolerance=1e-5) }) test_that("Basic Binomial CBPP examples", { ## Basic Binomial CBPP examples ---- intercept-only fixed effect expect_is(gm0, "glmmTMB") expect_is(gm1, "glmmTMB") expect_equal(fixef(gm0)[[1]], c("(Intercept)" = -2.045671), tolerance = 1e-3)#lme4 results expect_equal(fixef(gm1)[[1]], c("(Intercept)" = -1.398343,#lme4 results period2 = -0.991925, period3 = -1.128216, period4 = -1.579745), tolerance = 1e-3) # <- TODO: lower eventually }) test_that("Multiple RE, reordering", { ### Multiple RE, reordering skip_on_cran() tmb1 <- glmmTMB(cbind(incidence, size-incidence) ~ period + (1|herd) + (1|obs), data = cbpp, family=binomial()) tmb2 <- glmmTMB(cbind(incidence, size-incidence) ~ period + (1|obs) + (1|herd), data = cbpp, family=binomial()) expect_equal(fixef(tmb1), fixef(tmb2), tolerance = 1e-8) expect_equal(getME(tmb1, "theta"), getME(tmb2, "theta")[c(2,1)], tolerance = 5e-7) }) test_that("Alternative family specifications [via update(.)]", { ## intercept-only fixed effect res_chr <- matchForm(gm0, update(gm0, family= "binomial"), fn = TRUE) if (getRversion() >= "4.3.3") { ## mysterious failure on windows/oldrel (4.3.2) expect_equal_nover(gm0, res_chr) expect_equal_nover(gm0, matchForm(gm0, update(gm0, family= binomial()), fn = TRUE)) expect_warning(res_list <- matchForm(gm0, update(gm0, family= list(family = "binomial", link = "logit")), family=TRUE, fn=TRUE)) expect_equal_nover(gm0, res_list) } }) test_that("Update Binomial", { ## matchForm(): call doesn't match (formula gets mangled?) ## timing different if (getRversion() >= "4.3.3") { gm1u <- update(gm0, . ~ . + period) expect_equal_nover(gm1, matchForm(gm1, gm1u, fn=TRUE), tolerance = 5e-8) } }) test_that("internal structures", { ## RE terms in cond, zi, and disp model expect_equal(names(fm0$modelInfo$reTrms), c("cond","zi", "disp")) }) test_that("close to lme4 results", { skip_on_cran() expect_true(require("lme4")) L <- load(system.file("testdata", "lme-tst-fits.rda", package="lme4", mustWork=TRUE)) expect_is(L, "character") message("Loaded testdata from lme4:\n ", paste(strwrap(paste(L, collapse = ", ")), collapse = "\n ")) if(FALSE) { ## part of the above [not recreated here for speed mostly:] ## intercept only in both fixed and random effects fit_sleepstudy_0 <- lmer(Reaction ~ 1 + ( 1 | Subject), sleepstudy) ## fixed slope, intercept-only RE fit_sleepstudy_1 <- lmer(Reaction ~ Days + ( 1 | Subject), sleepstudy) ## fixed slope, intercept & slope RE fit_sleepstudy_2 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy) ## fixed slope, independent intercept & slope RE fit_sleepstudy_3 <- lmer(Reaction ~ Days + (1|Subject)+ (0+Days|Subject), sleepstudy) cbpp$obs <- factor(seq(nrow(cbpp))) ## intercept-only fixed effect fit_cbpp_0 <- glmer(cbind(incidence, size-incidence) ~ 1 + (1|herd), cbpp, family=binomial) ## include fixed effect of period fit_cbpp_1 <- update(fit_cbpp_0, . ~ . + period) ## include observation-level RE fit_cbpp_2 <- update(fit_cbpp_1, . ~ . + (1|obs)) ## specify formula by proportion/weights instead fit_cbpp_3 <- update(fit_cbpp_1, incidence/size ~ period + (1 | herd), weights = size) } ## What we really want to compare against - Maximum Likelihood (package 'DESCRIPTION' !) fi_0 <- lmer(Reaction ~ 1 + ( 1 | Subject), sleepstudy, REML=FALSE) fi_1 <- lmer(Reaction ~ Days + ( 1 | Subject), sleepstudy, REML=FALSE) fi_2 <- lmer(Reaction ~ Days + (Days| Subject), sleepstudy, REML=FALSE) fi_3 <- lmer(Reaction ~ Days + (1|Subject) + (0+Days|Subject), sleepstudy, REML=FALSE) ## Now check closeness to lme4 results ## ...................................... }) context("trickier examples") data(Owls) ## is <<- necessary ... ? Owls <- transform(Owls, ArrivalTime=scale(ArrivalTime,center=TRUE,scale=FALSE), NCalls= SiblingNegotiation) test_that("basic zero inflation", { skip_on_cran() if(require("pscl")) { o0.tmb <- glmmTMB(NCalls~(FoodTreatment + ArrivalTime) * SexParent + offset(logBroodSize), ziformula=~1, data = Owls, family=poisson(link = "log")) o0.pscl <-zeroinfl(NCalls~(FoodTreatment + ArrivalTime) * SexParent + offset(logBroodSize)|1, data = Owls) expect_equal(summary(o0.pscl)$coefficients$count, summary(o0.tmb)$coefficients$cond, tolerance=1e-5) expect_equal(summary(o0.pscl)$coefficients$zero, summary(o0.tmb)$coefficients$zi, tolerance=1e-5) o1.tmb <- glmmTMB(NCalls~(FoodTreatment + ArrivalTime) * SexParent + offset(logBroodSize) + diag(1 | Nest), ziformula=~1, data = Owls, family=poisson(link = "log")) expect_equal(ranef(o1.tmb)$cond$Nest[1,1], -0.484, tolerance=1e-2) #glmmADMB gave -0.4842771 } }) test_that("alternative binomial model specifications", { skip_on_cran() d <<- data.frame(y=1:10,N=20,x=1) ## n.b. global assignment for testthat m0 <- suppressWarnings(glmmTMB(cbind(y,N-y) ~ 1, data=d, family=binomial())) m3 <- glmmTMB(y/N ~ 1, weights=N, data=d, family=binomial()) expect_equal(fixef(m0),fixef(m3)) m1 <- glmmTMB((y>5)~1,data=d,family=binomial) m2 <- glmmTMB(factor(y>5)~1,data=d,family=binomial) expect_equal(c(unname(logLik(m1))),-6.931472,tol=1e-6) expect_equal(c(unname(logLik(m2))),-6.931472,tol=1e-6) }) test_that("formula expansion", { ## test that formulas are expanded in the call/printed form <- Reaction ~ Days + (1|Subject) expect_equal(grep("Reaction ~ Days", capture.output(print(glmmTMB(form, sleepstudy))), fixed=TRUE),1) }) test_that("NA handling", { skip_on_cran() data(sleepstudy,package="lme4") ss <- sleepstudy ss$Days[c(2,20,30)] <- NA op <- options(na.action=NULL) expect_error(glmmTMB(Reaction~Days,ss),"missing values in object") op <- options(na.action=na.fail) expect_error(glmmTMB(Reaction~Days,ss),"missing values in object") expect_equal(unname(fixef(glmmTMB(Reaction~Days,ss,na.action=na.omit))[[1]]), c(249.70505,11.11263), tolerance=1e-6) op <- options(na.action=na.omit) expect_equal(unname(fixef(glmmTMB(Reaction~Days,ss))[[1]]), c(249.70505,11.11263), tolerance=1e-6) }) test_that("quine NB fit", { skip_on_cran() quine.nb1 <- MASS::glm.nb(Days ~ Sex/(Age + Eth*Lrn), data = quine) quine.nb2 <- glmmTMB(Days ~ Sex/(Age + Eth*Lrn), data = quine, family=nbinom2()) expect_equal(coef(quine.nb1),fixef(quine.nb2)[["cond"]], tolerance=1e-4) }) ## quine.nb3 <- glmmTMB(Days ~ Sex + (1|Age), data = quine, ## family=nbinom2()) test_that("contrasts arg", { skip_on_cran() quine.nb1 <- MASS::glm.nb(Days ~ Sex*Age, data = quine, contrasts=list(Sex="contr.sum",Age="contr.sum")) quine.nb2 <- glmmTMB(Days ~ Sex*Age, data = quine, family=nbinom2(), contrasts=list(Sex="contr.sum",Age="contr.sum")) expect_equal(coef(quine.nb1),fixef(quine.nb2)[["cond"]], tolerance=1e-4) }) test_that("zero disp setting", { skip_on_cran() set.seed(101) dd <- data.frame(y=rnorm(100),obs=1:100) m0 <- glmmTMB(y~1, data=dd) v0 <- sigma(m0)^2 m1 <- glmmTMB(y~1+(1|obs), data=dd) tmpf <- function(x) c(sigma(x)^2, c(VarCorr(x)[["cond"]]$obs)) m <- -log10(.Machine$double.eps^(1/4)) pvec <- c(1,2.5,m,2*m,10) res <- matrix(NA,ncol=2,nrow=length(pvec), dimnames = list(format(pvec, digits = 3), c("sigma^2", "cond_var"))) for (i in (seq_along(pvec))) { mz <- update(m1,dispformula=~0, control=glmmTMBControl(zerodisp_val=log(10^(-pvec[i])))) res[i,] <- tmpf(mz) } res <- rbind(res,tmpf(m1)) ## sum of residual variance and RE variance should be approx constant/independent of fixed sigma expect_true(var(res[,1]+res[,2])<1e-8) }) test_that("dollar/no data arg warning", { expect_warning(glmmTMB(Reaction ~ sleepstudy$Days, data = sleepstudy), "is not recommended") attach(sleepstudy) expect_warning(glmmTMB(Reaction ~ Days), "is recommended") op <- options(warn = 2) ## check that warning is suppressed expect_is(glmmTMB(Reaction ~ Days, data = NULL), "glmmTMB") detach(sleepstudy) options(op) }) test_that("double bar notation", { data("sleepstudy", package="lme4") m1 <- glmmTMB(Reaction ~ 1 + (Days || Subject), sleepstudy) expect_equal(c(VarCorr(m1)$cond$Subject), c(564.340387730194, 0, 0, 140.874101713108), tolerance = 1e-6) }) test_that("bar/double-bar bug with gaussian response", { set.seed(1) n <- 100 xdata <- data.frame( rfac1 = as.factor(sample(letters[1:10], n, replace = TRUE)), rfac2 = as.factor(sample(letters[1:10], n, replace = TRUE)), cov = rnorm(n), rv = rpois(n, lambda = 2) ) m2 <- glmmTMB(rv~cov+(1+cov||rfac1)+(1|rfac2), family=gaussian, data=xdata) ## previously failed with "'names' attribute [3] must be the same length as the vector [1]" expect_is(m2, "glmmTMB") expect_equal(fixef(m2)$cond, c(`(Intercept)` = 2.09164503130437, cov = -0.0228597948394547)) }) test_that("drop dimensions in response variable", { ## GH #937 mm <- transform(mtcars, mpg = scale(mpg)) expect_is(glmmTMB(mpg ~ cyl, mm), "glmmTMB") }) test_that("handle failure in numDeriv::jacobian", { dd <- structure(list(preMDS = c(6L, 2L, 1L, 2L, 3L, 34L, 3L, 239L, 1L, 2L, 4L, 81L, 1L, 1L, 1L, 255L, 8L, 72L, 110L, 3L, 6L, 61L, 253L, 113L, 49L, 124L, 72L, 4L, 35L, 4206L, 3660L, 3100L, 4308L, 5871L, 1362L, 4301L, 2673L, 204L, 216L), F_Absetzen = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), levels = c("0", "1"), class = "factor"), Betrieb = structure(c(2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 5L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L ), levels = c("B02", "B03", "B04", "B05", "B06", "B07", "B08", "B10", "B11", "B13", "B13Zucht", "B14"), class = "factor")), row.names = seq(39), class = "data.frame") m1 <- suppressWarnings( glmmTMB(preMDS ~ 1 + F_Absetzen + (1 | Betrieb), data = dd, family = truncated_nbinom1)) expect_is(m1, "glmmTMB") }) test_that("don't mess up internal formula ordering", { dd <- expand.grid(type = factor(c("R","S")), strainN = factor(1:3), dose = c("N","C"), rep = factor(1:5), aid = factor(1:5), rep = 1:10) set.seed(101) dd$l3 <- rnorm(nrow(dd)) form <- l3~(type/strainN)*dose m1 <- glmmTMB(form, data = dd) expect_identical(colnames(model.matrix(m1)), colnames(model.matrix(form, data = dd))) }) test_that("subset argument", { fms <- update(fm1, subset = Days > 0) expect_false(isTRUE(all.equal(fixef(fm1), fixef(fms)))) expect_equal(fixef(fms)$cond, c(`(Intercept)` = 248.63573143019875, Days = 10.904528975303338)) })