test_that("building a plot does not affect its scales", { dat <- data_frame(x = rnorm(20), y = rnorm(20)) p <- ggplot(dat, aes(x, y)) + geom_point() expect_equal(length(p$scales$scales), 0) ggplot_build(p) expect_equal(length(p$scales$scales), 0) }) test_that("ranges update only for variables listed in aesthetics", { sc <- scale_alpha() sc$train_df(data_frame(alpha = 1:10)) expect_equal(sc$range$range, c(1, 10)) sc$train_df(data_frame(alpha = 50)) expect_equal(sc$range$range, c(1, 50)) sc$train_df(data_frame(beta = 100)) expect_equal(sc$range$range, c(1, 50)) sc$train_df(data_frame()) expect_equal(sc$range$range, c(1, 50)) }) test_that("mapping works", { sc <- scale_alpha(range = c(0, 1), na.value = 0) sc$train_df(data_frame(alpha = 1:10)) expect_equal( sc$map_df(data_frame(alpha = 1:10))[[1]], seq(0, 1, length.out = 10) ) expect_equal(sc$map_df(data_frame(alpha = NA))[[1]], 0) expect_equal( sc$map_df(data_frame(alpha = c(-10, 11)))[[1]], c(0, 0)) }) test_that("identity scale preserves input values", { df <- data_frame(x = 1:3, z = factor(letters[1:3])) # aesthetic-specific scales p1 <- ggplot(df, aes(x, z, colour = z, fill = z, shape = z, size = x, alpha = x)) + geom_point() + scale_colour_identity() + scale_fill_identity() + scale_shape_identity() + scale_size_identity() + scale_alpha_identity() d1 <- layer_data(p1) expect_equal(d1$colour, as.character(df$z)) expect_equal(d1$fill, as.character(df$z)) expect_equal(d1$shape, as.character(df$z)) expect_equal(d1$size, as.numeric(df$z)) expect_equal(d1$alpha, as.numeric(df$z)) # generic scales p2 <- ggplot(df, aes(x, z, colour = z, fill = z, shape = z, size = x, alpha = x)) + geom_point() + scale_discrete_identity(aesthetics = c("colour", "fill", "shape")) + scale_continuous_identity(aesthetics = c("size", "alpha")) d2 <- layer_data(p2) expect_equal(d1, d2) }) test_that("position scales are updated by all position aesthetics", { df <- data_frame(x = 1:3, y = 1:3) aesthetics <- list( aes(xend = x, yend = x), aes(xmin = x, ymin = x), aes(xmax = x, ymax = x), aes(xintercept = x, yintercept = y) ) base <- ggplot(df, aes(x = 1, y = 1)) + geom_point() plots <- lapply(aesthetics, function(x) base %+% x) ranges <- lapply(plots, pranges) lapply(ranges, function(range) { expect_equal(range$x[[1]], c(1, 3)) expect_equal(range$y[[1]], c(1, 3)) }) }) test_that("position scales generate after stats", { df <- data_frame(x = factor(c(1, 1, 1))) plot <- ggplot(df, aes(x)) + geom_bar() ranges <- pranges(plot) expect_equal(ranges$x[[1]], c("1")) expect_equal(ranges$y[[1]], c(0, 3)) }) test_that("oob affects position values", { dat <- data_frame(x = c("a", "b", "c"), y = c(1, 5, 10)) base <- ggplot(dat, aes(x, y)) + geom_col() + annotate("point", x = "a", y = c(-Inf, Inf)) y_scale <- function(limits, oob = censor) { scale_y_continuous(limits = limits, oob = oob, expand = c(0, 0)) } base + scale_y_continuous(limits = c(-0,5)) low_censor <- cdata(base + y_scale(c(0, 5), censor)) mid_censor <- cdata(base + y_scale(c(3, 7), censor)) handle <- GeomBar$handle_na expect_warning(low_censor[[1]] <- handle(low_censor[[1]], list(na.rm = FALSE)), "Removed 1 row containing missing values or values outside the scale range") expect_warning(mid_censor[[1]] <- handle(mid_censor[[1]], list(na.rm = FALSE)), "Removed 3 rows containing missing values or values outside the scale range") low_squish <- cdata(base + y_scale(c(0, 5), squish)) mid_squish <- cdata(base + y_scale(c(3, 7), squish)) # Points are always at the top and bottom expect_equal(low_censor[[2]]$y, c(0, 1)) expect_equal(mid_censor[[2]]$y, c(0, 1)) expect_equal(low_squish[[2]]$y, c(0, 1)) expect_equal(mid_squish[[2]]$y, c(0, 1)) # Bars depend on limits and oob expect_equal(low_censor[[1]]$y, c(0.2, 1)) expect_equal(mid_censor[[1]]$y, numeric(0)) expect_equal(low_squish[[1]]$y, c(0.2, 1, 1)) expect_equal(mid_squish[[1]]$y, c(0, 0.5, 1)) }) test_that("all-Inf layers are not used for determining the type of scale", { d1 <- data_frame(x = c("a", "b")) p1 <- ggplot(d1, aes(x, x)) + # Inf is numeric, but means discrete values in this case annotate("rect", xmin = -Inf, xmax = Inf, ymin = -Inf, ymax = Inf, fill = "black") + geom_point() b1 <- ggplot_build(p1) expect_s3_class(b1$layout$panel_scales_x[[1]], "ScaleDiscretePosition") p2 <- ggplot() + # If the layer non-Inf value, it's considered annotate("rect", xmin = -Inf, xmax = 0, ymin = -Inf, ymax = Inf, fill = "black") b2 <- ggplot_build(p2) expect_s3_class(b2$layout$panel_scales_x[[1]], "ScaleContinuousPosition") }) test_that("scales are looked for in appropriate place", { xlabel <- function(x) ggplot_build(x)$layout$panel_scales_x[[1]]$name p0 <- ggplot(mtcars, aes(mpg, wt)) + geom_point() + scale_x_continuous("0") expect_equal(xlabel(p0), "0") scale_x_continuous <- function(...) ggplot2::scale_x_continuous("1") p1 <- ggplot(mtcars, aes(mpg, wt)) + geom_point() expect_equal(xlabel(p1), "1") f <- function() { scale_x_continuous <- function(...) ggplot2::scale_x_continuous("2") ggplot(mtcars, aes(mpg, wt)) + geom_point() } p2 <- f() expect_equal(xlabel(p2), "2") rm(scale_x_continuous) p4 <- ggplot(mtcars, aes(mpg, wt)) + geom_point() expect_equal(xlabel(p4), waiver()) }) test_that("find_global searches in the right places", { testenv <- new.env(parent = globalenv()) # This should find the scale object in the package environment expect_identical(find_global("scale_colour_hue", testenv), ggplot2::scale_colour_hue) # Set an object with the same name in the environment testenv$scale_colour_hue <- "foo" # Now it should return the new object expect_identical(find_global("scale_colour_hue", testenv), "foo") # If we search in the empty env, we should end up with the object # from the ggplot2 namespace expect_identical(find_global("scale_colour_hue", emptyenv()), ggplot2::scale_colour_hue) }) test_that("scales warn when transforms introduces non-finite values", { df <- data_frame(x = c(1e1, 1e5), y = c(0, 100)) p <- ggplot(df, aes(x, y)) + geom_point(size = 5) + scale_y_log10() expect_warning(ggplot_build(p), "log-10 transformation introduced infinite values.") }) test_that("size and alpha scales throw appropriate warnings for factors", { df <- data_frame( x = 1:3, y = 1:3, d = LETTERS[1:3], o = factor(LETTERS[1:3], ordered = TRUE) ) p <- ggplot(df, aes(x, y)) # There should be warnings when unordered factors are mapped to size/alpha expect_warning( ggplot_build(p + geom_point(aes(size = d))), "Using size for a discrete variable is not advised." ) expect_warning( ggplot_build(p + geom_point(aes(alpha = d))), "Using alpha for a discrete variable is not advised." ) expect_warning( ggplot_build(p + geom_line(aes(linewidth = d, group = 1))), "Using linewidth for a discrete variable is not advised." ) # There should be no warnings for ordered factors expect_warning(ggplot_build(p + geom_point(aes(size = o))), NA) expect_warning(ggplot_build(p + geom_point(aes(alpha = o))), NA) }) test_that("shape scale throws appropriate warnings for factors", { df <- data_frame( x = 1:3, y = 1:3, d = LETTERS[1:3], o = factor(LETTERS[1:3], ordered = TRUE) ) p <- ggplot(df, aes(x, y)) # There should be no warnings when unordered factors are mapped to shape expect_warning(ggplot_build(p + geom_point(aes(shape = d))), NA) # There should be warnings for ordered factors expect_warning( ggplot_build(p + geom_point(aes(shape = o))), "Using shapes for an ordinal variable is not advised" ) }) test_that("aesthetics can be set independently of scale name", { df <- data_frame( x = LETTERS[1:3], y = LETTERS[4:6] ) p <- ggplot(df, aes(x, y, fill = y)) + scale_colour_manual(values = c("red", "green", "blue"), aesthetics = "fill") expect_equal(layer_data(p)$fill, c("red", "green", "blue")) }) test_that("multiple aesthetics can be set with one function call", { df <- data_frame( x = LETTERS[1:3], y = LETTERS[4:6] ) p <- ggplot(df, aes(x, y, colour = x, fill = y)) + scale_colour_manual( values = c("grey20", "grey40", "grey60", "red", "green", "blue"), aesthetics = c("colour", "fill") ) expect_equal(layer_data(p)$colour, c("grey20", "grey40", "grey60")) expect_equal(layer_data(p)$fill, c("red", "green", "blue")) # color order is determined by data order, and breaks are combined where possible df <- data_frame( x = LETTERS[1:3], y = LETTERS[2:4] ) p <- ggplot(df, aes(x, y, colour = x, fill = y)) + scale_colour_manual( values = c("cyan", "red", "green", "blue"), aesthetics = c("fill", "colour") ) expect_equal(layer_data(p)$colour, c("cyan", "red", "green")) expect_equal(layer_data(p)$fill, c("red", "green", "blue")) }) test_that("limits with NA are replaced with the min/max of the data for continuous scales", { make_scale <- function(limits = NULL, data = NULL) { scale <- continuous_scale("aesthetic", palette = identity, limits = limits) if (!is.null(data)) { scale$train(data) } scale } # emptiness expect_true(make_scale()$is_empty()) expect_false(make_scale(limits = c(0, 1))$is_empty()) expect_true(make_scale(limits = c(0, NA))$is_empty()) expect_true(make_scale(limits = c(NA, NA))$is_empty()) expect_true(make_scale(limits = c(NA, 0))$is_empty()) # limits expect_equal(make_scale(data = 1:5)$get_limits(), c(1, 5)) expect_equal(make_scale(limits = c(1, 5))$get_limits(), c(1, 5)) expect_equal(make_scale(limits = c(NA, NA))$get_limits(), c(0, 1)) expect_equal(make_scale(limits = c(NA, NA), data = 1:5)$get_limits(), c(1, 5)) expect_equal(make_scale(limits = c(1, NA), data = 1:5)$get_limits(), c(1, 5)) expect_equal(make_scale(limits = c(NA, 5), data = 1:5)$get_limits(), c(1, 5)) }) test_that("scale_apply preserves class and attributes", { df <- data_frame( x = structure(c(1, 2), foo = "bar", class = c("baz", "numeric")), y = c(1, 1), z = c("A", "B") ) # Functions to make the 'baz'-class more type stable `c.baz` <- function(...) { dots <- list(...) attris <- attributes(dots[[1]]) x <- do.call("c", lapply(dots, unclass)) attributes(x) <- attris x } `[.baz` <- function(x, i) { attris <- attributes(x) x <- unclass(x)[i] attributes(x) <- attris x } plot <- ggplot(df, aes(x, y)) + scale_x_continuous() + # Facetting such that 2 x-scales will exist, i.e. `x` will be subsetted facet_grid(~ z, scales = "free_x") plot <- ggplot_build(plot) # Perform identity transformation via `scale_apply` out <- with_bindings(scale_apply( df, "x", "transform", 1:2, plot$layout$panel_scales_x )[[1]], `c.baz` = `c.baz`, `[.baz` = `[.baz`, .env = global_env()) # Check that it errors on bad scale ids expect_snapshot_error(scale_apply( df, "x", "transform", c(NA, 1), plot$layout$panel_scales_x )) # Check class preservation expect_s3_class(out, "baz") expect_s3_class(out, "numeric") # Check attribute preservation expect_identical(attr(out, "foo"), "bar") # Negative control: non-type stable classes don't preserve attributes class(df$x) <- "foobar" out <- with_bindings(scale_apply( df, "x", "transform", 1:2, plot$layout$panel_scales_x )[[1]], `c.baz` = `c.baz`, `[.baz` = `[.baz`, .env = global_env()) expect_false(inherits(out, "foobar")) expect_null(attributes(out)) }) test_that("All scale_colour_*() have their American versions", { # In testthat, the package env contains non-exported functions as well so we # need to parse NAMESPACE file by ourselves exports <- readLines(system.file("NAMESPACE", package = "ggplot2")) colour_scale_exports <- grep("export\\(scale_colour_.*\\)", exports, value = TRUE) color_scale_exports <- grep("export\\(scale_color_.*\\)", exports, value = TRUE) expect_equal( colour_scale_exports, sub("color", "colour", color_scale_exports) ) }) test_that("scales accept lambda notation for function input", { check_lambda <- function(items, ggproto) { vapply(items, function(x) { f <- environment(ggproto[[x]])$f is_lambda(f) }, logical(1)) } # Test continuous scale scale <- scale_fill_gradient( limits = ~ .x + c(-1, 1), breaks = ~ seq(.x[1], .x[2], by = 2), minor_breaks = ~ seq(.x[1], .x[2], by = 1), labels = ~ toupper(.x), rescaler = ~ rescale_mid(.x, mid = 0), oob = ~ oob_squish(.x, .y, only.finite = FALSE) ) check <- check_lambda( c("limits", "breaks", "minor_breaks", "labels", "rescaler"), scale ) expect_true(all(check)) # Test discrete scale scale <- scale_x_discrete( limits = ~ rev(.x), breaks = ~ .x[-1], labels = ~ toupper(.x) ) check <- check_lambda(c("limits", "breaks", "labels"), scale) expect_true(all(check)) # Test binned scale scale <- scale_fill_steps( limits = ~ .x + c(-1, 1), breaks = ~ seq(.x[1], .x[2], by = 2), labels = ~ toupper(.x), rescaler = ~ rescale_mid(.x, mid = 0), oob = ~ oob_squish(.x, .y, only.finite = FALSE) ) check <- check_lambda( c("limits", "breaks", "labels", "rescaler"), scale ) expect_true(all(check)) }) test_that("breaks and labels are correctly checked", { expect_snapshot_error(check_breaks_labels(1:10, letters)) p <- ggplot(mtcars) + geom_point(aes(mpg, disp)) + scale_x_continuous(breaks = NA) expect_snapshot_error(ggplot_build(p)) p <- ggplot(mtcars) + geom_point(aes(mpg, disp)) + scale_x_continuous(minor_breaks = NA) expect_snapshot_error(ggplot_build(p)) p <- ggplot(mtcars) + geom_point(aes(mpg, disp)) + scale_x_continuous(labels = NA) expect_snapshot_error(ggplotGrob(p)) p <- ggplot(mtcars) + geom_point(aes(mpg, disp)) + scale_x_continuous(labels = function(x) 1:2) expect_snapshot_error(ggplotGrob(p)) p <- ggplot(mtcars) + geom_bar(aes(factor(gear))) + scale_x_discrete(breaks = NA) expect_snapshot_error(ggplot_build(p)) p <- ggplot(mtcars) + geom_bar(aes(factor(gear))) + scale_x_discrete(labels = NA) expect_snapshot_error(ggplotGrob(p)) p <- ggplot(mtcars) + geom_bar(aes(mpg)) + scale_x_binned(breaks = NA) expect_snapshot_error(ggplot_build(p)) p <- ggplot(mtcars) + geom_bar(aes(mpg)) + scale_x_binned(labels = NA) expect_snapshot_error(ggplotGrob(p)) p <- ggplot(mtcars) + geom_bar(aes(mpg)) + scale_x_binned(labels = function(x) 1:2) expect_snapshot_error(ggplotGrob(p)) }) test_that("staged aesthetics are backtransformed properly (#4155)", { p <- ggplot(data.frame(value = 16)) + geom_point(aes(stage(value, after_stat = x / 2), 0)) + scale_x_sqrt(limits = c(0, 16), breaks = c(2, 4, 8)) # x / 2 should be 16 / 2 = 8, thus the result should be sqrt(8) on scale_x_sqrt() expect_equal(layer_data(p)$x, sqrt(8)) }) test_that("numeric scale transforms can produce breaks", { test_breaks <- function(transform, limits) { scale <- scale_x_continuous(transform = transform) scale$train(scale$transform(limits)) view <- view_scale_primary(scale) scale$get_transformation()$inverse(view$get_breaks()) } expect_equal(test_breaks("asn", limits = c(0, 1)), seq(0, 1, by = 0.25)) expect_equal(test_breaks("sqrt", limits = c(0, 10)), seq(0, 10, by = 2.5)) expect_equal(test_breaks("atanh", limits = c(-0.9, 0.9)), c(NA, -0.5, 0, 0.5, NA)) expect_equal(test_breaks(transform_boxcox(0), limits = c(1, 10)), c(NA, 2.5, 5.0, 7.5, 10)) expect_equal(test_breaks(transform_modulus(0), c(-10, 10)), seq(-10, 10, by = 5)) expect_equal(test_breaks(transform_yj(0), c(-10, 10)), seq(-10, 10, by = 5)) expect_equal(test_breaks("exp", c(-10, 10)), seq(-10, 10, by = 5)) expect_equal(test_breaks("identity", limits = c(-10, 10)), seq(-10, 10, by = 5)) # irrational numbers, so snapshot values expect_snapshot(test_breaks("log", limits = c(0.1, 1000))) expect_equal(test_breaks("log10", limits = c(0.1, 1000)), 10 ^ seq(-1, 3)) expect_equal(test_breaks("log2", limits = c(0.5, 32)), c(0.5, 2, 8, 32)) expect_equal(test_breaks("log1p", limits = c(0, 10)), seq(0, 10, by = 2.5)) expect_equal(test_breaks("pseudo_log", limits = c(-10, 10)), seq(-10, 10, by = 5)) expect_equal(test_breaks("logit", limits = c(0.001, 0.999)), c(NA, 0.25, 0.5, 0.75, NA)) expect_equal(test_breaks("probit", limits = c(0.001, 0.999)), c(NA, 0.25, 0.5, 0.75, NA)) expect_equal(test_breaks("reciprocal", limits = c(1, 10)), c(NA, 2.5, 5, 7.5, 10)) expect_equal(test_breaks("reverse", limits = c(-10, 10)), seq(-10, 10, by = 5)) expect_equal(test_breaks("sqrt", limits = c(0, 10)), seq(0, 10, by = 2.5)) }) test_that("scale functions accurately report their calls", { construct <- exprs( scale_alpha(), scale_alpha_binned(), scale_alpha_continuous(), scale_alpha_date(), scale_alpha_datetime(), scale_alpha_discrete(), scale_alpha_identity(), scale_alpha_manual(), scale_alpha_ordinal(), # Skipping American spelling of 'color' scales here scale_colour_binned(), scale_colour_brewer(), scale_colour_continuous(), scale_colour_date(), scale_colour_datetime(), scale_colour_discrete(), scale_colour_distiller(), scale_colour_fermenter(), scale_colour_gradient(), scale_colour_gradient2(), # Some scales have required arguments scale_colour_gradientn(colours = c("firebrick", "limegreen")), scale_colour_grey(), scale_colour_hue(), scale_colour_identity(), scale_colour_manual(), scale_colour_ordinal(), scale_colour_steps(), scale_colour_steps2(), scale_colour_stepsn(colours = c("orchid", "tomato")), scale_colour_viridis_b(), scale_colour_viridis_c(), scale_colour_viridis_d(), scale_continuous_identity(aesthetics = "foo"), scale_discrete_identity(aesthetics = "bar"), scale_discrete_manual(aesthetics = "baz"), scale_fill_binned(), scale_fill_brewer(), scale_fill_continuous(), scale_fill_date(), scale_fill_datetime(), scale_fill_discrete(), scale_fill_distiller(), scale_fill_fermenter(), scale_fill_gradient(), scale_fill_gradient2(), scale_fill_gradientn(colours = c("yellow", "green")), scale_fill_grey(), scale_fill_hue(), scale_fill_identity(), scale_fill_manual(), scale_fill_ordinal(), scale_fill_steps(), scale_fill_steps2(), scale_fill_stepsn(colours = c("steelblue", "pink")), scale_fill_viridis_b(), scale_fill_viridis_c(), scale_fill_viridis_d(), scale_linetype(), scale_linetype_binned(), # scale_linetype_continuous(), # designed to throw error scale_linetype_discrete(), scale_linetype_identity(), scale_linetype_manual(), scale_linewidth(), scale_linewidth_binned(), scale_linewidth_continuous(), scale_linewidth_date(), scale_linewidth_datetime(), scale_linewidth_discrete(), scale_linewidth_identity(), scale_linewidth_manual(), scale_linewidth_ordinal(), scale_radius(), scale_shape(), scale_shape_binned(), # scale_shape_continuous(), # designed to throw error scale_shape_discrete(), scale_shape_identity(), scale_shape_manual(), scale_shape_ordinal(), scale_size(), scale_size_area(), scale_size_binned(), scale_size_binned_area(), scale_size_continuous(), scale_size_date(), scale_size_datetime(), scale_size_discrete(), scale_size_identity(), scale_size_manual(), scale_size_ordinal(), scale_x_binned(), scale_x_continuous(), scale_x_date(), scale_x_datetime(), scale_x_discrete(), scale_x_log10(), scale_x_reverse(), scale_x_sqrt(), # scale_x_time(), scale_y_binned(), scale_y_continuous(), scale_y_date(), scale_y_datetime(), scale_y_discrete(), scale_y_log10(), scale_y_reverse(), scale_y_sqrt(), # scale_y_time(), xlim(10, 20), ylim("A", "B") ) if (is_installed("hms")) { construct <- c(construct, exprs(scale_x_time(), scale_y_time())) } suppressWarnings( calls <- lapply(construct, function(x) eval(x)$call) ) expect_equal(calls, construct) }) test_that("scale call is found accurately", { call_template <- quote(scale_x_continuous(transform = "log10")) sc <- do.call("scale_x_continuous", list(transform = "log10")) expect_equal(sc$call, call_template) sc <- inject(scale_x_continuous(!!!list(transform = "log10"))) expect_equal(sc$call, call_template) sc <- exec("scale_x_continuous", transform = "log10") expect_equal(sc$call, call_template) foo <- function() scale_x_continuous(transform = "log10") expect_equal(foo()$call, call_template) env <- new_environment() env$bar <- function() scale_x_continuous(transform = "log10") expect_equal(env$bar()$call, call_template) # Now should recognise the outer function scale_x_new <- function() { scale_x_continuous(transform = "log10") } expect_equal( scale_x_new()$call, quote(scale_x_new()) ) }) test_that("training incorrectly appropriately communicates the offenders", { sc <- scale_colour_viridis_d() expect_snapshot_error( sc$train(1:5) ) sc <- scale_colour_viridis_c() expect_snapshot_error( sc$train(LETTERS[1:5]) ) }) test_that("find_scale appends appropriate calls", { expect_equal( find_scale("x", 1)$call, quote(scale_x_continuous()) ) expect_equal( find_scale("colour", "A")$call, quote(scale_colour_discrete()) ) }) test_that("Using `scale_name` prompts deprecation message", { expect_snapshot_warning(continuous_scale("x", "foobar", pal_identity())) expect_snapshot_warning(discrete_scale("x", "foobar", pal_identity())) expect_snapshot_warning(binned_scale("x", "foobar", pal_identity())) }) # From #5623 test_that("Discrete scales with only NAs return `na.value`", { x <- c(NA, NA) sc <- scale_colour_discrete(na.value = "red") sc$train(x) expect_equal(sc$map(x), c("red", "red")) sc <- scale_shape(na.value = NA_real_) sc$train(x) expect_equal(sc$map(x), c(NA_real_, NA_real_)) })