test_that("stat_summary(_bin) work with lambda expressions", { # note: stat_summary and stat_summary_bin both use # make_summary_fun, so this tests both dat <- data_frame( x = c(1, 1, 2, 2, 3, 3), y = c(0, 2, 1, 3, 2, 4) ) p1 <- ggplot(dat, aes(x, y)) + stat_summary(fun.data = mean_se) # test fun.data p2 <- ggplot(dat, aes(x, y)) + stat_summary(fun.data = ~ { mean <- mean(.x) se <- sqrt(stats::var(.x) / length(.x)) data_frame(y = mean, ymin = mean - se, ymax = mean + se) }) expect_equal( layer_data(p1), layer_data(p2) ) # fun, fun.min, fun.max p3 <- ggplot(dat, aes(x, y)) + stat_summary( fun = ~ mean(.x), fun.min = ~ mean(.x) - sqrt(stats::var(.x) / length(.x)), fun.max = ~ mean(.x) + sqrt(stats::var(.x) / length(.x)) ) expect_equal( layer_data(p1), layer_data(p3) ) }) test_that("stat_summary_(2d|hex) work with lambda expressions", { dat <- data_frame( x = c(0, 0, 0, 0, 1, 1, 1, 1), y = c(0, 0, 1, 1, 0, 0, 1, 1), z = c(1, 1, 2, 2, 2, 2, 3, 3) ) # stat_summary_2d p1 <- ggplot(dat, aes(x, y, z = z)) + stat_summary_2d(fun = function(x) mean(x)) p2 <- ggplot(dat, aes(x, y, z = z)) + stat_summary_2d(fun = ~ mean(.x)) expect_equal( layer_data(p1), layer_data(p2) ) # stat_summary_hex # this plot is a bit funky, but easy to reason through p1 <- ggplot(dat, aes(x, y, z = z)) + stat_summary_hex(fun = function(x) mean(x)) p2 <- ggplot(dat, aes(x, y, z = z)) + stat_summary_hex(fun = ~ mean(.x)) expect_equal( layer_data(p1), layer_data(p2) ) })