x <- exp(seq(log(0.001), log(1000), length.out = 100)) foo <- data_frame( x = x, y = x / (1 + x) ) test_that("sec_axis checks the user input", { scale <- scale_x_continuous() expect_snapshot_error(set_sec_axis(16, scale)) expect_silent(set_sec_axis(~ .^2, scale)) secondary <- ggproto(NULL, AxisSecondary, trans = 1:10) expect_snapshot_error(secondary$init(scale)) p <- ggplot(mtcars) + geom_point(aes(disp, mpg)) + scale_y_continuous(sec.axis = ~sin(.)) expect_snapshot_error(ggplot_build(p)) p <- ggplot(mtcars) + geom_point(aes(disp, mpg)) + scale_y_continuous(sec.axis = ~sin(./100)) expect_silent(ggplot_build(p)) }) test_that("dup_axis() works", { p <- ggplot(foo, aes(x, y)) + geom_point() + scale_x_continuous( name = "Unit A", sec.axis = dup_axis() ) scale <- layer_scales(p)$x expect_equal(scale$sec_name(), scale$name) breaks <- scale$break_info() expect_equal(breaks$minor_source, breaks$sec.minor_source_user) expect_equal(breaks$major_source, breaks$sec.major_source_user) # these aren't exactly equal because the sec_axis trans is based on a # (default) 1000-point approximation expect_true(all(abs(breaks$major_source - round(breaks$sec.major_source) <= 1))) expect_true(all(abs(breaks$minor_source - round(breaks$sec.minor_source) <= 1))) expect_equal(round(breaks$major, 3), round(breaks$major, 3)) expect_equal(round(breaks$minor, 3), round(breaks$minor, 3)) }) test_that("sec_axis() works with subtraction", { p <- ggplot(foo, aes(x, y)) + geom_point() + scale_y_continuous( sec.axis = sec_axis(~1-.) ) scale <- layer_scales(p)$y expect_equal(scale$sec_name(), scale$name) breaks <- scale$break_info() expect_equal(breaks$minor_source, breaks$sec.minor_source_user) expect_equal(breaks$major_source, breaks$sec.major_source_user) # these aren't exactly equal because the sec_axis trans is based on a # (default) 1000-point approximation expect_true(all(abs(breaks$major_source - round(breaks$sec.major_source) <= 1))) expect_true(all(abs(breaks$minor_source - round(breaks$sec.minor_source) <= 1))) expect_equal(round(breaks$major, 3), round(breaks$major, 3)) expect_equal(round(breaks$minor, 3), round(breaks$minor, 3)) }) test_that("sex axis works with division (#1804)", { expect_doppelganger( "sec_axis, with division", ggplot(mpg, aes(displ, hwy)) + geom_point() + scale_y_continuous(sec.axis = sec_axis(~ 235 / ., name = "100km / L")) + theme_linedraw() ) }) test_that("sec_axis() breaks work for log-transformed scales", { df <- data_frame( x = c("A", "B", "C"), y = c(10, 100, 1000) ) # dup_axis() p <- ggplot(data = df, aes(x, y)) + geom_point() + scale_y_log10(sec.axis = dup_axis()) scale <- layer_scales(p)$y breaks <- scale$break_info() # test value expect_equal(breaks$major_source, log10(breaks$sec.major_source_user)) expect_equal(round(breaks$major_source, 2), round(breaks$sec.major_source, 2)) # test position expect_equal(breaks$major, round(breaks$sec.major, 1)) # sec_axis() with transform p <- ggplot(data = df, aes(x, y)) + geom_point() + scale_y_log10(sec.axis = sec_axis(~ . * 100)) scale <- layer_scales(p)$y breaks <- scale$break_info() # test value expect_equal(breaks$major_source, log10(breaks$sec.major_source_user) - 2) expect_equal(breaks$major_source, round(breaks$sec.major_source, 2)) # test position expect_equal(breaks$major, round(breaks$sec.major, 1)) # sec_axis() with transform and breaks custom_breaks <- c(10, 20, 40, 200, 400, 800) p <- ggplot(data = df, aes(x, y)) + geom_point() + scale_y_log10(breaks = custom_breaks, sec.axis = sec_axis(~ . * 100)) scale <- layer_scales(p)$y breaks <- scale$break_info() expect_equal(breaks$major_source, log(custom_breaks, base = 10)) expect_equal(log_breaks()(df$y) * 100, breaks$sec.major_source_user) }) test_that("custom breaks work", { custom_breaks <- c(100, 375, 800) p <- ggplot(foo, aes(x, y)) + geom_point() + scale_x_continuous( name = "Unit A", sec.axis = sec_axis( trans = y ~ ., breaks = custom_breaks ) ) scale <- layer_scales(p)$x breaks <- scale$break_info() expect_equal(custom_breaks, breaks$sec.major_source_user) }) test_that("sec axis works with skewed transform", { expect_doppelganger( "sec_axis, skewed transform", ggplot(foo, aes(x, y)) + geom_point() + scale_x_continuous( name = "Unit A", trans = "log", breaks = c(0.001, 0.01, 0.1, 1, 10, 100, 1000), sec.axis = sec_axis(~ . * 100, name = "Unit B", labels = derive(), breaks = derive() ) ) + theme_linedraw() ) }) test_that("sec axis works with tidy eval", { # decoy, not used a <- 5 f <- function(df, .x, .y, .z) { x <- enquo(.x) y <- enquo(.y) z <- enquo(.z) a <- 10 # scaling of secondary axis g <- ggplot(df, aes(x = !!x, y = !!y)) + geom_bar(stat = "identity") + geom_point(aes(y = !!z)) + scale_y_continuous(sec.axis = sec_axis(~ . / a)) g } t <- tibble(x = letters, y = seq(10, 260, 10), z = 1:26) p <- f(t, x, y, z) scale <- layer_scales(p)$y breaks <- scale$break_info() # test transform expect_equal(breaks$major_source / 10, breaks$sec.major_source_user) # test positioning expect_equal(round(breaks$major, 2), round(breaks$sec.major, 2)) }) test_that("sec_axis() handles secondary power transformations", { set.seed(111) df <- data_frame( x = rnorm(100), y = rnorm(100) ) p <- ggplot(df, aes(x, y)) + geom_point() + scale_y_continuous(sec.axis = sec_axis(trans = (~ 2^.))) scale <- layer_scales(p)$y breaks <- scale$break_info() expect_equal(round(breaks$major[4:6], 2), round(breaks$sec.major[c(1, 2, 4)], 2)) expect_doppelganger( "sec_axis, sec power transform", ggplot() + geom_point(aes(x = 1:10, y = rep(5, 10))) + scale_x_continuous(sec.axis = sec_axis(~ log10(.))) + theme_linedraw() ) }) test_that("sec_axis() respects custom transformations", { # Custom transform code submitted by DInfanger, Issue #2798 magnify_trans_log <- function(interval_low = 0.05, interval_high = 1, reducer = 0.05, reducer2 = 8) { trans <- Vectorize(function(x, i_low = interval_low, i_high = interval_high, r = reducer, r2 = reducer2) { if (is.na(x) || (x >= i_low & x <= i_high)) { x } else if (x < i_low & !is.na(x)) { (log10(x / r) / r2 + i_low) } else { log10((x - i_high) / r + i_high) / r2 } }) inv <- Vectorize(function(x, i_low = interval_low, i_high = interval_high, r = reducer, r2 = reducer2) { if (is.na(x) || (x >= i_low & x <= i_high)) { x } else if (x < i_low & !is.na(x)) { 10^(-(i_low - x) * r2) * r } else { i_high + 10^(x * r2) * r - i_high * r } }) trans_new(name = "customlog", transform = trans, inverse = inv, domain = c(1e-16, Inf)) } # Create data x <- seq(-1, 1, length.out = 1000) y <- c(x[x < 0] + 1, -x[x > 0] + 1) + 1e-6 dat <- data_frame(x = c(NA, x), y = c(1, y)) expect_doppelganger( "sec_axis, custom transform", ggplot(dat, aes(x = x, y = y)) + geom_line(linewidth = 1, na.rm = T) + scale_y_continuous( trans = magnify_trans_log(interval_low = 0.5, interval_high = 1, reducer = 0.5, reducer2 = 8), breaks = c(0.001, 0.01, 0.1, 0.5, 0.6, 0.7, 0.8, 0.9, 1), limits = c(0.001, 1), sec.axis = sec_axis( trans = ~ . * (1 / 2), breaks = c(0.001, 0.01, 0.1, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5) ) ) + theme_linedraw() ) }) test_that("sec_axis works with date/time/datetime scales", { # datetime labels are locale dependent withr::local_locale(c(LC_TIME = "C")) df <- data_frame( dx = seq(as.POSIXct("2012-02-29 12:00:00", tz = "UTC", format = "%Y-%m-%d %H:%M:%S" ), length.out = 10, by = "4 hour" ), price = seq(20, 200000, length.out = 10) ) df$date <- as.Date(df$dx) # date scale, dup_axis dt <- ggplot(df, aes(dx, price)) + geom_line() + scale_x_datetime(sec.axis = dup_axis()) scale <- layer_scales(dt)$x breaks <- scale$break_info() expect_equal(breaks$major_source, breaks$sec.major_source_user) # datetime scale dt <- ggplot(df, aes(date, price)) + geom_line() + scale_x_date(sec.axis = dup_axis()) scale <- layer_scales(dt)$x breaks <- scale$break_info() expect_equal(breaks$major_source, breaks$sec.major_source_user) # sec_axis dt <- ggplot(df, aes(dx, price)) + geom_line() + scale_x_datetime( name = "UTC", sec.axis = sec_axis(~ . + 12 * 60 * 60, name = "UTC+12" ) ) scale <- layer_scales(dt)$x breaks <- scale$break_info() expect_equal( as.numeric(breaks$major_source) + 12 * 60 * 60, as.numeric(breaks$sec.major_source_user) ) # visual test, datetime scales, reprex #1936 df <- data_frame( x = as.POSIXct(c( "2016-11-30 00:00:00", "2016-11-30 06:00:00", "2016-11-30 12:00:00", "2016-11-30 18:00:00", "2016-12-01 00:00:00" ), tz = "UTC"), y = c(0, -1, 0, 1, 0) ) expect_doppelganger( "sec_axis, datetime scale", ggplot(df, aes(x = x, y = y)) + geom_line() + scale_x_datetime("UTC", date_breaks = "2 hours", date_labels = "%I%p", sec.axis = dup_axis(~ . - 8 * 60 * 60, name = "PST") ) + theme_linedraw() ) }) test_that("sec.axis allows independent trans btwn primary and secondary axes", { data <- data_frame( Value = c(0.18, 0.29, 0.35, 0.46, 0.50, 0.50, 0.51), Probability = c(0.045, 0.090, 0.136, 0.181, 0.227, 0.272, 0.318) ) expect_doppelganger( "sec_axis, independent transformations", ggplot(data = data, aes(Probability, Value)) + geom_point() + scale_x_continuous( trans = scales::probability_trans(distribution = "norm", lower.tail = FALSE), sec.axis = sec_axis(trans = ~ 1 / ., name = "Return Period") ) + theme_linedraw() ) }) # Currently fails do to necessary reversion of #2805 test_that("sec_axis() works for power transformations (monotonicity test doesn't fail)", { data <- data_frame( x = seq(0, 1, length.out = 100), y = seq(0, 4, length.out = 100) ) expect_doppelganger( "sec axis monotonicity test", ggplot(data, aes(x, y)) + geom_line() + scale_y_continuous(trans = "sqrt", sec.axis = dup_axis()) + theme_linedraw() ) testdat <- data_frame( x = runif(11), y = seq(0, 1, 0.1) ) p <- ggplot(data = testdat, aes(x = x, y = y)) + geom_point() + scale_y_continuous(sec.axis = sec_axis(trans = ~ .^0.5)) scale <- layer_scales(p)$y breaks <- scale$break_info() expect_equal(breaks$major, sqrt(breaks$sec.major), tolerance = .005) p <- ggplot(foo, aes(x, y)) + geom_point() + scale_x_sqrt(sec.axis = dup_axis()) scale <- layer_scales(p)$x breaks <- scale$break_info() expect_equal(breaks$major, breaks$sec.major, tolerance = .001) p <- ggplot(foo, aes(x, y)) + geom_point() + scale_x_sqrt(sec.axis = sec_axis(~ . * 100)) scale <- layer_scales(p)$x breaks <- scale$break_info() expect_equal(breaks$major, breaks$sec.major, tolerance = .001) })