test_that("building a plot does not affect its scales", { dat <- data_frame(x = rnorm(20), y = rnorm(20)) p <- ggplot(dat, aes(x, y)) + geom_point() expect_equal(length(p$scales$scales), 0) ggplot_build(p) expect_equal(length(p$scales$scales), 0) }) test_that("ranges update only for variables listed in aesthetics", { sc <- scale_alpha() sc$train_df(data_frame(alpha = 1:10)) expect_equal(sc$range$range, c(1, 10)) sc$train_df(data_frame(alpha = 50)) expect_equal(sc$range$range, c(1, 50)) sc$train_df(data_frame(beta = 100)) expect_equal(sc$range$range, c(1, 50)) sc$train_df(data_frame()) expect_equal(sc$range$range, c(1, 50)) }) test_that("mapping works", { sc <- scale_alpha(range = c(0, 1), na.value = 0) sc$train_df(data_frame(alpha = 1:10)) expect_equal( sc$map_df(data_frame(alpha = 1:10))[[1]], seq(0, 1, length.out = 10) ) expect_equal(sc$map_df(data_frame(alpha = NA))[[1]], 0) expect_equal( sc$map_df(data_frame(alpha = c(-10, 11)))[[1]], c(0, 0)) }) test_that("identity scale preserves input values", { df <- data_frame(x = 1:3, z = factor(letters[1:3])) # aesthetic-specific scales p1 <- ggplot(df, aes(x, z, colour = z, fill = z, shape = z, size = x, alpha = x)) + geom_point() + scale_colour_identity() + scale_fill_identity() + scale_shape_identity() + scale_size_identity() + scale_alpha_identity() d1 <- layer_data(p1) expect_equal(d1$colour, as.character(df$z)) expect_equal(d1$fill, as.character(df$z)) expect_equal(d1$shape, as.character(df$z)) expect_equal(d1$size, as.numeric(df$z)) expect_equal(d1$alpha, as.numeric(df$z)) # generic scales p2 <- ggplot(df, aes(x, z, colour = z, fill = z, shape = z, size = x, alpha = x)) + geom_point() + scale_discrete_identity(aesthetics = c("colour", "fill", "shape")) + scale_continuous_identity(aesthetics = c("size", "alpha")) d2 <- layer_data(p2) expect_equal(d1, d2) }) test_that("position scales are updated by all position aesthetics", { df <- data_frame(x = 1:3, y = 1:3) aesthetics <- list( aes(xend = x, yend = x), aes(xmin = x, ymin = x), aes(xmax = x, ymax = x), aes(xintercept = x, yintercept = y) ) base <- ggplot(df, aes(x = 1, y = 1)) + geom_point() plots <- lapply(aesthetics, function(x) base %+% x) ranges <- lapply(plots, pranges) lapply(ranges, function(range) { expect_equal(range$x[[1]], c(1, 3)) expect_equal(range$y[[1]], c(1, 3)) }) }) test_that("position scales generate after stats", { df <- data_frame(x = factor(c(1, 1, 1))) plot <- ggplot(df, aes(x)) + geom_bar() ranges <- pranges(plot) expect_equal(ranges$x[[1]], c("1")) expect_equal(ranges$y[[1]], c(0, 3)) }) test_that("oob affects position values", { dat <- data_frame(x = c("a", "b", "c"), y = c(1, 5, 10)) base <- ggplot(dat, aes(x, y)) + geom_col() + annotate("point", x = "a", y = c(-Inf, Inf)) y_scale <- function(limits, oob = censor) { scale_y_continuous(limits = limits, oob = oob, expand = c(0, 0)) } base + scale_y_continuous(limits = c(-0,5)) expect_warning(low_censor <- cdata(base + y_scale(c(0, 5), censor)), "Removed 1 rows containing missing values") expect_warning(mid_censor <- cdata(base + y_scale(c(3, 7), censor)), "Removed 2 rows containing missing values") low_squish <- cdata(base + y_scale(c(0, 5), squish)) mid_squish <- cdata(base + y_scale(c(3, 7), squish)) # Points are always at the top and bottom expect_equal(low_censor[[2]]$y, c(0, 1)) expect_equal(mid_censor[[2]]$y, c(0, 1)) expect_equal(low_squish[[2]]$y, c(0, 1)) expect_equal(mid_squish[[2]]$y, c(0, 1)) # Bars depend on limits and oob expect_equal(low_censor[[1]]$y, c(0.2, 1)) expect_equal(mid_censor[[1]]$y, c(0.5)) expect_equal(low_squish[[1]]$y, c(0.2, 1, 1)) expect_equal(mid_squish[[1]]$y, c(0, 0.5, 1)) }) test_that("all-Inf layers are not used for determining the type of scale", { d1 <- data_frame(x = c("a", "b")) p1 <- ggplot(d1, aes(x, x)) + # Inf is numeric, but means discrete values in this case annotate("rect", xmin = -Inf, xmax = Inf, ymin = -Inf, ymax = Inf, fill = "black") + geom_point() b1 <- ggplot_build(p1) expect_s3_class(b1$layout$panel_scales_x[[1]], "ScaleDiscretePosition") p2 <- ggplot() + # If the layer non-Inf value, it's considered annotate("rect", xmin = -Inf, xmax = 0, ymin = -Inf, ymax = Inf, fill = "black") b2 <- ggplot_build(p2) expect_s3_class(b2$layout$panel_scales_x[[1]], "ScaleContinuousPosition") }) test_that("scales are looked for in appropriate place", { xlabel <- function(x) ggplot_build(x)$layout$panel_scales_x[[1]]$name p0 <- ggplot(mtcars, aes(mpg, wt)) + geom_point() + scale_x_continuous("0") expect_equal(xlabel(p0), "0") scale_x_continuous <- function(...) ggplot2::scale_x_continuous("1") p1 <- ggplot(mtcars, aes(mpg, wt)) + geom_point() expect_equal(xlabel(p1), "1") f <- function() { scale_x_continuous <- function(...) ggplot2::scale_x_continuous("2") ggplot(mtcars, aes(mpg, wt)) + geom_point() } p2 <- f() expect_equal(xlabel(p2), "2") rm(scale_x_continuous) p4 <- ggplot(mtcars, aes(mpg, wt)) + geom_point() expect_equal(xlabel(p4), waiver()) }) test_that("find_global searches in the right places", { testenv <- new.env(parent = globalenv()) # This should find the scale object in the package environment expect_identical(find_global("scale_colour_hue", testenv), ggplot2::scale_colour_hue) # Set an object with the same name in the environment testenv$scale_colour_hue <- "foo" # Now it should return the new object expect_identical(find_global("scale_colour_hue", testenv), "foo") # If we search in the empty env, we should end up with the object # from the ggplot2 namespace expect_identical(find_global("scale_colour_hue", emptyenv()), ggplot2::scale_colour_hue) }) test_that("scales warn when transforms introduces non-finite values", { df <- data_frame(x = c(1e1, 1e5), y = c(0, 100)) p <- ggplot(df, aes(x, y)) + geom_point(size = 5) + scale_y_log10() expect_warning(ggplot_build(p), "Transformation introduced infinite values") }) test_that("scales get their correct titles through layout", { df <- data_frame(x = c(1e1, 1e5), y = c(0, 100)) p <- ggplot(df, aes(x, y)) + geom_point(size = 5) p <- ggplot_build(p) expect_identical(p$layout$xlabel(p$plot$labels)$primary, "x") expect_identical(p$layout$ylabel(p$plot$labels)$primary, "y") }) test_that("size and alpha scales throw appropriate warnings for factors", { df <- data_frame( x = 1:3, y = 1:3, d = LETTERS[1:3], o = factor(LETTERS[1:3], ordered = TRUE) ) p <- ggplot(df, aes(x, y)) # There should be warnings when unordered factors are mapped to size/alpha expect_warning( ggplot_build(p + geom_point(aes(size = d))), "Using size for a discrete variable is not advised." ) expect_warning( ggplot_build(p + geom_point(aes(alpha = d))), "Using alpha for a discrete variable is not advised." ) expect_warning( ggplot_build(p + geom_line(aes(linewidth = d, group = 1))), "Using linewidth for a discrete variable is not advised." ) # There should be no warnings for ordered factors expect_warning(ggplot_build(p + geom_point(aes(size = o))), NA) expect_warning(ggplot_build(p + geom_point(aes(alpha = o))), NA) }) test_that("shape scale throws appropriate warnings for factors", { df <- data_frame( x = 1:3, y = 1:3, d = LETTERS[1:3], o = factor(LETTERS[1:3], ordered = TRUE) ) p <- ggplot(df, aes(x, y)) # There should be no warnings when unordered factors are mapped to shape expect_warning(ggplot_build(p + geom_point(aes(shape = d))), NA) # There should be warnings for ordered factors expect_warning( ggplot_build(p + geom_point(aes(shape = o))), "Using shapes for an ordinal variable is not advised" ) }) test_that("aesthetics can be set independently of scale name", { df <- data_frame( x = LETTERS[1:3], y = LETTERS[4:6] ) p <- ggplot(df, aes(x, y, fill = y)) + scale_colour_manual(values = c("red", "green", "blue"), aesthetics = "fill") expect_equal(layer_data(p)$fill, c("red", "green", "blue")) }) test_that("multiple aesthetics can be set with one function call", { df <- data_frame( x = LETTERS[1:3], y = LETTERS[4:6] ) p <- ggplot(df, aes(x, y, colour = x, fill = y)) + scale_colour_manual( values = c("grey20", "grey40", "grey60", "red", "green", "blue"), aesthetics = c("colour", "fill") ) expect_equal(layer_data(p)$colour, c("grey20", "grey40", "grey60")) expect_equal(layer_data(p)$fill, c("red", "green", "blue")) # color order is determined by data order, and breaks are combined where possible df <- data_frame( x = LETTERS[1:3], y = LETTERS[2:4] ) p <- ggplot(df, aes(x, y, colour = x, fill = y)) + scale_colour_manual( values = c("cyan", "red", "green", "blue"), aesthetics = c("fill", "colour") ) expect_equal(layer_data(p)$colour, c("cyan", "red", "green")) expect_equal(layer_data(p)$fill, c("red", "green", "blue")) }) test_that("limits with NA are replaced with the min/max of the data for continuous scales", { make_scale <- function(limits = NULL, data = NULL) { scale <- continuous_scale("aesthetic", scale_name = "test", palette = identity, limits = limits) if (!is.null(data)) { scale$train(data) } scale } # emptiness expect_true(make_scale()$is_empty()) expect_false(make_scale(limits = c(0, 1))$is_empty()) expect_true(make_scale(limits = c(0, NA))$is_empty()) expect_true(make_scale(limits = c(NA, NA))$is_empty()) expect_true(make_scale(limits = c(NA, 0))$is_empty()) # limits expect_equal(make_scale(data = 1:5)$get_limits(), c(1, 5)) expect_equal(make_scale(limits = c(1, 5))$get_limits(), c(1, 5)) expect_equal(make_scale(limits = c(NA, NA))$get_limits(), c(0, 1)) expect_equal(make_scale(limits = c(NA, NA), data = 1:5)$get_limits(), c(1, 5)) expect_equal(make_scale(limits = c(1, NA), data = 1:5)$get_limits(), c(1, 5)) expect_equal(make_scale(limits = c(NA, 5), data = 1:5)$get_limits(), c(1, 5)) }) test_that("scale_apply preserves class and attributes", { df <- data_frame( x = structure(c(1, 2), foo = "bar", class = c("baz", "numeric")), y = c(1, 1), z = c("A", "B") ) # Functions to make the 'baz'-class more type stable `c.baz` <- function(...) { dots <- list(...) attris <- attributes(dots[[1]]) x <- do.call("c", lapply(dots, unclass)) attributes(x) <- attris x } `[.baz` <- function(x, i) { attris <- attributes(x) x <- unclass(x)[i] attributes(x) <- attris x } plot <- ggplot(df, aes(x, y)) + scale_x_continuous() + # Facetting such that 2 x-scales will exist, i.e. `x` will be subsetted facet_grid(~ z, scales = "free_x") plot <- ggplot_build(plot) # Perform identity transformation via `scale_apply` out <- with_bindings(scale_apply( df, "x", "transform", 1:2, plot$layout$panel_scales_x )[[1]], `c.baz` = `c.baz`, `[.baz` = `[.baz`, .env = global_env()) # Check that it errors on bad scale ids expect_snapshot_error(scale_apply( df, "x", "transform", c(NA, 1), plot$layout$panel_scales_x )) # Check class preservation expect_s3_class(out, "baz") expect_s3_class(out, "numeric") # Check attribute preservation expect_identical(attr(out, "foo"), "bar") # Negative control: non-type stable classes don't preserve attributes class(df$x) <- "foobar" out <- with_bindings(scale_apply( df, "x", "transform", 1:2, plot$layout$panel_scales_x )[[1]], `c.baz` = `c.baz`, `[.baz` = `[.baz`, .env = global_env()) expect_false(inherits(out, "foobar")) expect_null(attributes(out)) }) test_that("All scale_colour_*() have their American versions", { # In testthat, the package env contains non-exported functions as well so we # need to parse NAMESPACE file by ourselves exports <- readLines(system.file("NAMESPACE", package = "ggplot2")) colour_scale_exports <- grep("export\\(scale_colour_.*\\)", exports, value = TRUE) color_scale_exports <- grep("export\\(scale_color_.*\\)", exports, value = TRUE) expect_equal( colour_scale_exports, sub("color", "colour", color_scale_exports) ) }) test_that("scales accept lambda notation for function input", { check_lambda <- function(items, ggproto) { vapply(items, function(x) { f <- environment(ggproto[[x]])$f is_lambda(f) }, logical(1)) } # Test continuous scale scale <- scale_fill_gradient( limits = ~ .x + c(-1, 1), breaks = ~ seq(.x[1], .x[2], by = 2), minor_breaks = ~ seq(.x[1], .x[2], by = 1), labels = ~ toupper(.x), rescaler = ~ rescale_mid(.x, mid = 0), oob = ~ oob_squish(.x, .y, only.finite = FALSE) ) check <- check_lambda( c("limits", "breaks", "minor_breaks", "labels", "rescaler"), scale ) expect_true(all(check)) # Test discrete scale scale <- scale_x_discrete( limits = ~ rev(.x), breaks = ~ .x[-1], labels = ~ toupper(.x) ) check <- check_lambda(c("limits", "breaks", "labels"), scale) expect_true(all(check)) # Test binned scale scale <- scale_fill_steps( limits = ~ .x + c(-1, 1), breaks = ~ seq(.x[1], .x[2], by = 2), labels = ~ toupper(.x), rescaler = ~ rescale_mid(.x, mid = 0), oob = ~ oob_squish(.x, .y, only.finite = FALSE) ) check <- check_lambda( c("limits", "breaks", "labels", "rescaler"), scale ) expect_true(all(check)) }) test_that("breaks and labels are correctly checked", { expect_snapshot_error(check_breaks_labels(1:10, letters)) p <- ggplot(mtcars) + geom_point(aes(mpg, disp)) + scale_x_continuous(breaks = NA) expect_snapshot_error(ggplot_build(p)) p <- ggplot(mtcars) + geom_point(aes(mpg, disp)) + scale_x_continuous(minor_breaks = NA) expect_snapshot_error(ggplot_build(p)) p <- ggplot(mtcars) + geom_point(aes(mpg, disp)) + scale_x_continuous(labels = NA) expect_snapshot_error(ggplotGrob(p)) p <- ggplot(mtcars) + geom_point(aes(mpg, disp)) + scale_x_continuous(labels = function(x) 1:2) expect_snapshot_error(ggplotGrob(p)) p <- ggplot(mtcars) + geom_bar(aes(factor(gear))) + scale_x_discrete(breaks = NA) expect_snapshot_error(ggplot_build(p)) p <- ggplot(mtcars) + geom_bar(aes(factor(gear))) + scale_x_discrete(labels = NA) expect_snapshot_error(ggplotGrob(p)) p <- ggplot(mtcars) + geom_bar(aes(mpg)) + scale_x_binned(breaks = NA) expect_snapshot_error(ggplot_build(p)) p <- ggplot(mtcars) + geom_bar(aes(mpg)) + scale_x_binned(labels = NA) expect_snapshot_error(ggplotGrob(p)) p <- ggplot(mtcars) + geom_bar(aes(mpg)) + scale_x_binned(labels = function(x) 1:2) expect_snapshot_error(ggplotGrob(p)) }) test_that("staged aesthetics are backtransformed properly (#4155)", { p <- ggplot(data.frame(value = 16)) + geom_point(aes(stage(value, after_stat = x / 2), 0)) + scale_x_sqrt(limits = c(0, 16), breaks = c(2, 4, 8)) # x / 2 should be 16 / 2 = 8, thus the result should be sqrt(8) on scale_x_sqrt() expect_equal(layer_data(p)$x, sqrt(8)) })