test_that("geom_quantile matches quantile regression", { skip_if(packageVersion("base") < "3.6.0") # warnPartialMatchArgs didn't accept FALSE withr::local_options( warnPartialMatchArgs = FALSE, warnPartialMatchDollar = FALSE ) skip_if_not_installed("quantreg") set.seed(6531) x <- rnorm(10) df <- tibble::tibble( x = x, y = x^2 + 0.5 * rnorm(10) ) ps <- ggplot(df, aes(x, y)) + geom_quantile() quants <- c(0.25, 0.5, 0.75) pred_rq <- predict( quantreg::rq(y ~ x, tau = quants, data = df ), data_frame( x = seq(min(x), max(x), length.out = 100) ) ) pred_rq <- cbind(seq(min(x), max(x), length.out = 100), pred_rq) colnames(pred_rq) <- c("x", paste("Q", quants * 100, sep = "_")) # pred_rq is a matrix; convert it to data.frame so that it can be compared pred_rq <- as.data.frame(pred_rq) ggplot_data <- layer_data(ps) pred_rq_test_25 <- pred_rq[, c("x", "Q_25")] colnames(pred_rq_test_25) <- c("x", "y") # Use expect_equal(ignore_attr = TRUE) to ignore rownames expect_equal( ggplot_data[ggplot_data$quantile == 0.25, c("x", "y")], pred_rq_test_25, ignore_attr = TRUE ) pred_rq_test_50 <- pred_rq[, c("x", "Q_50")] colnames(pred_rq_test_50) <- c("x", "y") expect_equal( ggplot_data[ggplot_data$quantile == 0.5, c("x", "y")], pred_rq_test_50, ignore_attr = TRUE ) pred_rq_test_75 <- pred_rq[, c("x", "Q_75")] colnames(pred_rq_test_75) <- c("x", "y") expect_equal( ggplot_data[ggplot_data$quantile == 0.75, c("x", "y")], pred_rq_test_75, ignore_attr = TRUE ) })