skip_on_os(c("mac", "solaris")) skip_if_not_installed("lme4") skip_if_not_installed("effects") skip_if_not_installed("emmeans") skip_if_not_installed("withr") withr::with_environment( new.env(), test_that("validate ggpredict glm against predict", { data(efc, package = "ggeffects") efc$neg_c_7d <- as.numeric(efc$neg_c_7 > median(efc$neg_c_7, na.rm = TRUE)) d <- efc fit <- glm(neg_c_7d ~ c12hour + e42dep + c161sex + c172code, data = d, family = binomial(link = "logit")) m <- glm( cbind(incidence, size - incidence) ~ period, family = binomial, data = lme4::cbpp ) nd <- data_grid(fit, "c12hour [10, 50, 100]") pr <- predict(fit, newdata = nd, se.fit = TRUE, type = "link") expected <- stats::plogis(pr$fit + stats::qnorm(0.975) * pr$se.fit) predicted <- ggpredict(fit, "c12hour [10, 50, 100]") expect_equal(predicted$conf.high, expected, tolerance = 1e-3, ignore_attr = TRUE) expect_equal(predicted$predicted, stats::plogis(pr$fit), tolerance = 1e-3, ignore_attr = TRUE) }) ) withr::with_environment( new.env(), test_that("validate ggpredict glm against predict 2", { data(efc, package = "ggeffects") efc$neg_c_7d <- as.numeric(efc$neg_c_7 > median(efc$neg_c_7, na.rm = TRUE)) d <- efc fit <- glm(neg_c_7d ~ c12hour + e42dep + c161sex + c172code, data = d, family = binomial(link = "logit")) m <- glm( cbind(incidence, size - incidence) ~ period, family = binomial, data = lme4::cbpp ) nd <- data_grid(m, "period") pr <- predict(m, newdata = nd, se.fit = TRUE, type = "link") expected <- stats::plogis(pr$fit + stats::qnorm(0.975) * pr$se.fit) predicted <- ggpredict(m, "period") expect_equal(predicted$conf.high, expected, tolerance = 1e-3, ignore_attr = TRUE) expect_equal(predicted$predicted, stats::plogis(pr$fit), tolerance = 1e-3, ignore_attr = TRUE) }) ) withr::with_environment( new.env(), test_that("ggpredict, glm", { data(efc, package = "ggeffects") efc$neg_c_7d <- as.numeric(efc$neg_c_7 > median(efc$neg_c_7, na.rm = TRUE)) d <- efc fit <- glm(neg_c_7d ~ c12hour + e42dep + c161sex + c172code, data = d, family = binomial(link = "logit")) m <- glm( cbind(incidence, size - incidence) ~ period, family = binomial, data = lme4::cbpp ) expect_s3_class(ggpredict(fit, "c12hour", verbose = FALSE), "data.frame") expect_s3_class(ggpredict(fit, c("c12hour", "c161sex"), verbose = FALSE), "data.frame") expect_s3_class(ggpredict(fit, c("c12hour", "c161sex", "c172code"), verbose = FALSE), "data.frame") expect_s3_class(ggeffect(fit, "c12hour", verbose = FALSE), "data.frame") expect_s3_class(ggeffect(fit, c("c12hour", "c161sex"), verbose = FALSE), "data.frame") expect_s3_class(ggeffect(fit, c("c12hour", "c161sex", "c172code"), verbose = FALSE), "data.frame") expect_s3_class(ggemmeans(fit, "c12hour", verbose = FALSE), "data.frame") expect_s3_class(ggemmeans(fit, c("c12hour", "c161sex"), verbose = FALSE), "data.frame") expect_s3_class(ggemmeans(fit, c("c12hour", "c161sex", "c172code"), verbose = FALSE), "data.frame") p1 <- ggpredict(m, "period", verbose = FALSE) p2 <- ggeffect(m, "period", verbose = FALSE) p3 <- ggemmeans(m, "period", verbose = FALSE) expect_equal(p1$predicted[1], 0.2194245, tolerance = 1e-3) expect_equal(p2$predicted[1], 0.2194245, tolerance = 1e-3) expect_equal(p3$predicted[1], 0.2194245, tolerance = 1e-3) }) ) withr::with_environment( new.env(), test_that("ggpredict, glm, robust", { data(efc, package = "ggeffects") efc$neg_c_7d <- as.numeric(efc$neg_c_7 > median(efc$neg_c_7, na.rm = TRUE)) d <- efc fit <- glm(neg_c_7d ~ c12hour + e42dep + c161sex + c172code, data = d, family = binomial(link = "logit")) m <- glm( cbind(incidence, size - incidence) ~ period, family = binomial, data = lme4::cbpp ) expect_s3_class( ggpredict(fit, "c12hour", vcov = "HC1", verbose = FALSE), "data.frame" ) expect_s3_class( ggpredict(fit, c("c12hour", "c161sex"), vcov = "HC1", verbose = FALSE), "data.frame" ) expect_s3_class( ggpredict(fit, c("c12hour", "c161sex", "c172code"), vcov = "HC1", verbose = FALSE), "data.frame" ) expect_s3_class(ggpredict(m, "period", vcov = "HC1"), "data.frame") }) ) withr::with_environment( new.env(), test_that("ggeffects, glm-matrix-columns", { data(cbpp, package = "lme4") cbpp$trials <- cbpp$size - cbpp$incidence d2 <- cbpp m1 <- lme4::glmer(cbind(incidence, trials) ~ period + (1 | herd), data = d2, family = binomial) m2 <- lme4::glmer(cbind(incidence, size - incidence) ~ period + (1 | herd), data = d2, family = binomial) m3 <- glm(cbind(incidence, trials) ~ period, data = d2, family = binomial) m4 <- glm(cbind(incidence, size - incidence) ~ period, data = d2, family = binomial) expect_s3_class(ggpredict(m1, "period"), "data.frame") expect_s3_class(ggpredict(m2, "period"), "data.frame") expect_s3_class(ggpredict(m3, "period"), "data.frame") expect_s3_class(ggpredict(m4, "period"), "data.frame") expect_s3_class(ggemmeans(m1, "period"), "data.frame") expect_s3_class(ggemmeans(m2, "period"), "data.frame") expect_s3_class(ggemmeans(m3, "period"), "data.frame") expect_s3_class(ggemmeans(m4, "period"), "data.frame") }) ) test_that("ggaverage, invlink", { skip_if_not_installed("marginaleffects") dat2 <- data.frame( sex = c("m", "w", "w", "m", "w", "w", "m", "w", "w", "m", "m", "w", "w"), smoking = c(0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1), age = c(10, 45, 50, 40, 45, 12, 14, 55, 60, 10, 14, 50, 40), stringsAsFactors = FALSE ) m3 <- glm(smoking ~ sex, data = dat2, family = binomial("logit")) out1 <- ggaverage(m3, "sex", verbose = FALSE) out2 <- marginaleffects::avg_predictions(m3, variables = "sex", type = "invlink(link)") expect_equal(out1$predicted, out2$estimate, tolerance = 1e-4) expect_equal(out1$conf.low, out2$conf.low, tolerance = 1e-4) expect_equal(out1$conf.high, out2$conf.high, tolerance = 1e-4) }) test_that("ggpredict, Gamma with invers-link", { data(warpbreaks) mod <- glm(breaks ~ wool * tension, family = Gamma(), data = warpbreaks) em <- as.data.frame(suppressMessages(emmeans::emmeans(mod, c("wool", "tension"), type = "response"))) out <- predict_response(mod, c("wool", "tension")) em <- em[order(em$wool), ] expect_equal(out$predicted, em$response, tolerance = 1e-3) expect_equal(out$conf.low, em$lower.CL, tolerance = 1e-3) }) test_that("ggpredict, Gaussian with invers-link", { data(warpbreaks) mod <- glm(breaks ~ wool * tension, family = gaussian("inverse"), data = warpbreaks) em <- as.data.frame(suppressMessages(emmeans::emmeans(mod, c("wool", "tension"), type = "response"))) out <- predict_response(mod, c("wool", "tension")) em <- em[order(em$wool), ] expect_equal(out$predicted, em$response, tolerance = 1e-3) expect_equal(out$conf.low, em$lower.CL, tolerance = 1e-3) out <- predict_response(mod, c("wool", "tension"), margin = "marginalmeans") expect_equal(out$predicted, em$response, tolerance = 1e-3) expect_equal(out$conf.low, em$lower.CL, tolerance = 1e-3) })