skip_on_cran() skip_on_os(c("mac", "solaris")) skip_if_not_installed("fixest") skip_if_not_installed("marginaleffects") test_that("fixest", { # avoid warnings fixest::setFixest_nthreads(1) data(trade, package = "fixest") m1 <- fixest::femlm(Euros ~ log(dist_km) | Origin + Destination + Product, data = trade) m2 <- fixest::feols( Sepal.Width ~ Petal.Length | Species | Sepal.Length ~ Petal.Width, data = iris ) pr <- ggpredict(m1, "dist_km", verbose = FALSE) expect_equal( pr$predicted, predict(m1, newdata = new_data(m1, "dist_km"), type = "response"), ignore_attr = TRUE, tolerance = 1e-4 ) expect_equal( pr$conf.low, c( NaN, 6567987.47119, 1918140.84625, 933657.78549, 560181.38314, 376913.26471, 272669.08511, 207374.63131, 163597.57034, 132722.06505, 110075.22955, 92936.61294, 79631.35008, 69080.50789, 60562.50146, 53579.27456, 47777.67671, 42901.41398, 38760.67293 ), ignore_attr = TRUE, tolerance = 1e-4 ) comp <- test_predictions(pr) expect_equal(comp$Slope, -136389.1, tolerance = 1) expect_error(test_predictions(pr, engine = "ggeffects")) pr <- ggpredict(m2, "Petal.Length", verbose = FALSE) expect_equal( pr$predicted, predict(m2, newdata = new_data(m2, "Petal.Length")), ignore_attr = TRUE, tolerance = 1e-4 ) expect_equal( pr$conf.low, c( -8618.29934, -12816.64871, -17014.99809, -21213.34746, -25411.69683, -29610.0462, -33808.39557, -38006.74495, -42205.09432, -46403.44369, -50601.79306, -54800.14243, -58998.4918 ), ignore_attr = TRUE, tolerance = 1e-4 ) comp <- test_predictions(pr) expect_equal(comp$Slope, 94.36154, tolerance = 1) pr <- ggpredict(m2, "Petal.Length", verbose = FALSE, vcov = "iid") expect_equal( pr$conf.low, c( -10714.26495, -15960.59713, -21206.92931, -26453.26148, -31699.59366, -36945.92584, -42192.25802, -47438.59019, -52684.92237, -57931.25455, -63177.58672, -68423.9189, -73670.25108 ), ignore_attr = TRUE, tolerance = 1e-4 ) }) test_that("fixest, numeric cluster variable works", { set.seed(101) # For reproducibility dat <- data.frame( y = rnorm(200), year = sample(c(2010, 2011, 2012), 200, replace = TRUE), var = rnorm(200) ) model <- fixest::feols(y ~ var | year, data = dat) out <- ggpredict(model, terms = "var") expect_equal(out$predicted, c(-0.10301, -0.05684, -0.01067, 0.03551, 0.08168, 0.12785, 0.17402), tolerance = 1e-4) expect_equal(out$conf.low, c(-0.98691, -0.64611, -0.3053, 0.03551, -0.21296, -0.46142, -0.70988), tolerance = 1e-4) })