skip_on_cran() skip_on_os(c("mac", "solaris")) skip_if_not_installed("rstanarm") skip_if_not_installed("lme4") skip_if_not_installed("withr") withr::with_environment( new.env(), test_that("ggpredict, rstan", { # fit linear model data(sleepstudy, package = "lme4") data(efc, package = "ggeffects") sleepstudy$age <- round(runif(nrow(sleepstudy), min = 20, max = 60)) sleepstudy$Rdicho <- as.factor(as.numeric(sleepstudy$Reaction > median(sleepstudy$Reaction))) efc <- datawizard::to_factor(efc, c("e42dep", "c161sex", "c172code")) d <<- sleepstudy d2 <<- efc m <- suppressWarnings(rstanarm::stan_glmer( Reaction ~ Days + age + (1 | Subject), data = d, QR = TRUE, # this next line is only to keep the example small in size! chains = 2, cores = 1, seed = 12345, iter = 500, refresh = 0 )) m2 <- suppressWarnings(rstanarm::stan_glmer( Rdicho ~ Days + age + (1 | Subject), data = d, QR = TRUE, family = binomial, chains = 2, iter = 500, refresh = 0 )) m3 <- suppressWarnings(rstanarm::stan_glm( tot_sc_e ~ neg_c_7 + e42dep + barthtot + c172code + c161sex, data = d2, family = poisson("log"), chains = 2, iter = 500, refresh = 0 )) expect_s3_class(ggpredict(m, "Days", verbose = FALSE), "data.frame") expect_s3_class(ggpredict(m, c("Days", "age"), verbose = FALSE), "data.frame") expect_s3_class(ggpredict(m, "Days", type = "random", interval = "confidence", verbose = FALSE), "data.frame") expect_s3_class(ggpredict(m, c("Days", "age"), type = "random", verbose = FALSE), "data.frame") expect_s3_class(ggpredict(m, "Days", interval = "prediction", verbose = FALSE), "data.frame") expect_s3_class(ggpredict(m, c("Days", "age"), interval = "prediction", verbose = FALSE), "data.frame") expect_s3_class(ggpredict(m, "Days", type = "random", interval = "prediction", verbose = FALSE), "data.frame") expect_s3_class(ggpredict(m, c("Days", "age"), type = "random", interval = "prediction", verbose = FALSE), "data.frame") expect_s3_class(ggpredict(m2, "Days", verbose = FALSE), "data.frame") expect_s3_class(ggpredict(m2, c("Days", "age"), verbose = FALSE), "data.frame") expect_s3_class(ggpredict(m2, "Days", type = "random", verbose = FALSE), "data.frame") expect_s3_class(ggpredict(m2, c("Days", "age"), type = "random", verbose = FALSE), "data.frame") expect_s3_class(ggpredict(m2, "Days", interval = "prediction", verbose = FALSE), "data.frame") expect_s3_class(ggpredict(m2, c("Days", "age"), interval = "prediction", verbose = FALSE), "data.frame") expect_s3_class(ggpredict(m2, "Days", type = "random", interval = "prediction", verbose = FALSE), "data.frame") expect_s3_class(ggpredict(m2, c("Days", "age"), type = "random", interval = "prediction", verbose = FALSE), "data.frame") # nolint expect_s3_class(ggpredict(m3, "neg_c_7", verbose = FALSE), "data.frame") expect_s3_class(ggpredict(m3, c("neg_c_7", "e42dep"), verbose = FALSE), "data.frame") expect_s3_class(ggpredict(m3, "neg_c_7", interval = "prediction", verbose = FALSE), "data.frame") expect_s3_class(ggpredict(m3, c("neg_c_7", "e42dep"), interval = "prediction", verbose = FALSE), "data.frame") }) ) withr::with_environment( new.env(), test_that("ggpredict, rstanarm, ci-level", { data(efc, package = "ggeffects") fit <- rstanarm::stan_glm(barthtot ~ c12hour + neg_c_7, data = efc, seed = 1, refresh = 0) # 90% CI set.seed(1) out1 <- ggpredict(fit, terms = "c12hour[20]", condition = c(neg_c_7 = 11), interval = "prediction", ci_level = 0.9 ) set.seed(1) est_ppd <- rstanarm::posterior_predict(fit, newdata = data.frame(c12hour = 20, neg_c_7 = 11)) out2 <- rstanarm::posterior_interval(est_ppd) # 90% CI expect_equal( out1$conf.low, as.vector(out2[1, 1]), tolerance = 1e-4 ) # 95% CI set.seed(1) out1 <- ggpredict(fit, terms = "c12hour[20]", condition = c(neg_c_7 = 11), interval = "prediction", ci_level = 0.95 ) set.seed(1) est_ppd <- rstanarm::posterior_predict(fit, newdata = data.frame(c12hour = 20, neg_c_7 = 11)) out2 <- rstanarm::posterior_interval(est_ppd, prob = 0.95) # 90% CI expect_equal( out1$conf.low, as.vector(out2[1, 1]), tolerance = 1e-4 ) }) )