skip_on_cran() skip_on_os(c("mac", "solaris")) skip_if_not_installed("brms") test_that("ggpredict, brms-ppd", { x <- rnorm(10, 0) b <- runif(2) s <- ifelse(diag(2) == 0, 0.23, 1) er <- cbind(rnorm(10, 0, s), rnorm(10, 0, s)) y <- apply(t(b), 2, `*`, x) + er d <- data.frame(y1 = y[, 1], y2 = y[, 2], x) m1 <- suppressWarnings(brms::brm( brms::bf(mvbind(y1, y2) ~ 1 + x) + brms::set_rescor(TRUE), data = d, chains = 2, iter = 500, refresh = 0 )) m2 <- suppressWarnings(brms::brm( y1 ~ x, data = d, chains = 2, iter = 500, refresh = 0 )) expect_s3_class(suppressWarnings(ggpredict(m1, interval = "prediction")), c("ggalleffects", "list")) expect_s3_class(suppressWarnings(ggpredict(m1, "x", interval = "prediction")), "data.frame") expect_s3_class(ggpredict(m1, interval = "prediction"), c("ggalleffects", "list")) expect_s3_class(ggpredict(m1, "x", interval = "prediction"), "data.frame") expect_s3_class(suppressWarnings(ggpredict(m2, interval = "prediction")), c("ggalleffects", "list")) expect_s3_class(suppressWarnings(ggpredict(m2, "x", interval = "prediction")), "data.frame") expect_s3_class(ggpredict(m1, interval = "confidence"), c("ggalleffects", "list")) expect_s3_class(ggpredict(m1, "x", interval = "confidence"), "data.frame") expect_s3_class(ggpredict(m2, interval = "confidence"), c("ggalleffects", "list")) expect_s3_class(ggpredict(m2, "x", interval = "confidence"), "data.frame") set.seed(123) out1 <- suppressWarnings(ggpredict(m1, "x", interval = "prediction")) set.seed(123) out2 <- ggpredict(m1, "x", interval = "prediction") expect_equal(out1$predicted, out2$predicted, tolerance = 1e-3) expect_equal(out1$conf.low, out2$conf.low, tolerance = 1e-3) })