skip_on_os(c("mac", "solaris")) skip_if_not_installed("effects") skip_if_not_installed("emmeans") skip_if_not_installed("sjlabelled") # lm, linear regression ---- data(efc, package = "ggeffects") fit <- lm(barthtot ~ c12hour + neg_c_7 + c161sex + c172code, data = efc) test_that("validate ggpredict lm against predict", { nd <- data_grid(fit, "c12hour [10, 50, 100]") pr <- predict(fit, newdata = nd, se.fit = TRUE) expected <- pr$fit + stats::qt(0.975, df.residual(fit)) * pr$se.fit # works with "ggpredict()" predicted <- ggpredict(fit, "c12hour [10, 50, 100]") expect_equal(predicted$conf.high, expected, tolerance = 1e-3, ignore_attr = TRUE) expect_equal(predicted$predicted, pr$fit, tolerance = 1e-3, ignore_attr = TRUE) # works with "predict_response()" predicted2 <- predict_response(fit, "c12hour [10, 50, 100]") expect_equal(predicted2$conf.high, expected, tolerance = 1e-3, ignore_attr = TRUE) expect_equal(predicted2$predicted, pr$fit, tolerance = 1e-3, ignore_attr = TRUE) # predict_response() and ggpredict() should be identical expect_identical(predicted, predicted2) }) test_that("ggpredict, lm", { expect_s3_class(ggpredict(fit, "c12hour"), "data.frame") expect_s3_class(ggpredict(fit, c("c12hour", "c161sex")), "data.frame") }) test_that("ggpredict, lm print", { x <- ggpredict(fit, c("c12hour", "c161sex", "c172code")) out <- utils::capture.output(print(x)) expect_identical( out, c( "# Predicted values of Total score BARTHEL INDEX", "", "c161sex: Male", "c172code: [1] low level of education", "", "c12hour | Predicted | 95% CI", "----------------------------------", " 0 | 73.95 | 69.35, 78.56", " 45 | 62.56 | 58.22, 66.89", " 85 | 52.42 | 47.89, 56.96", " 170 | 30.89 | 24.84, 36.95", "", "c161sex: Male", "c172code: [2] intermediate level of education", "", "c12hour | Predicted | 95% CI", "----------------------------------", " 0 | 74.67 | 71.05, 78.29", " 45 | 63.27 | 59.88, 66.67", " 85 | 53.14 | 49.39, 56.89", " 170 | 31.61 | 25.97, 37.25", "", "c161sex: Male", "c172code: [3] high level of education", "", "c12hour | Predicted | 95% CI", "----------------------------------", " 0 | 75.39 | 71.03, 79.75", " 45 | 63.99 | 59.72, 68.26", " 85 | 53.86 | 49.22, 58.50", " 170 | 32.33 | 25.94, 38.72", "", "c161sex: Female", "c172code: [1] low level of education", "", "c12hour | Predicted | 95% CI", "----------------------------------", " 0 | 75.00 | 71.40, 78.59", " 45 | 63.60 | 60.45, 66.74", " 85 | 53.46 | 50.12, 56.80", " 170 | 31.93 | 26.82, 37.05", "", "c161sex: Female", "c172code: [2] intermediate level of education", "", "c12hour | Predicted | 95% CI", "----------------------------------", " 0 | 75.71 | 73.31, 78.12", " 45 | 64.32 | 62.41, 66.22", " 85 | 54.18 | 51.81, 56.56", " 170 | 32.65 | 27.94, 37.37", "", "c161sex: Female", "c172code: [3] high level of education", "", "c12hour | Predicted | 95% CI", "----------------------------------", " 0 | 76.43 | 72.88, 79.98", " 45 | 65.03 | 61.67, 68.39", " 85 | 54.90 | 51.15, 58.65", " 170 | 33.37 | 27.69, 39.05", "", "Adjusted for:", "* neg_c_7 = 11.84" ) ) x <- ggpredict(fit, c("c12hour", "c161sex", "neg_c_7")) out <- utils::capture.output(print(x)) expect_identical( out, c( "# Predicted values of Total score BARTHEL INDEX", "", "c161sex: Male", "neg_c_7: 8", "", "c12hour | Predicted | 95% CI", "----------------------------------", " 0 | 83.47 | 79.72, 87.22", " 45 | 72.07 | 68.36, 75.78", " 85 | 61.94 | 57.76, 66.12", " 170 | 40.41 | 34.27, 46.55", "", "c161sex: Male", "neg_c_7: 11.8", "", "c12hour | Predicted | 95% CI", "----------------------------------", " 0 | 74.74 | 71.11, 78.36", " 45 | 63.34 | 59.94, 66.74", " 85 | 53.21 | 49.46, 56.96", " 170 | 31.68 | 26.04, 37.31", "", "c161sex: Male", "neg_c_7: 15.7", "", "c12hour | Predicted | 95% CI", "----------------------------------", " 0 | 65.78 | 61.53, 70.03", " 45 | 54.38 | 50.49, 58.27", " 85 | 44.25 | 40.20, 48.30", " 170 | 22.72 | 17.10, 28.33", "", "c161sex: Female", "neg_c_7: 8", "", "c12hour | Predicted | 95% CI", "----------------------------------", " 0 | 84.51 | 81.74, 87.27", " 45 | 73.11 | 70.51, 75.72", " 85 | 62.98 | 59.82, 66.14", " 170 | 41.45 | 36.06, 46.84", "", "c161sex: Female", "neg_c_7: 11.8", "", "c12hour | Predicted | 95% CI", "----------------------------------", " 0 | 75.78 | 73.38, 78.19", " 45 | 64.38 | 62.48, 66.28", " 85 | 54.25 | 51.88, 56.62", " 170 | 32.72 | 28.01, 37.43", "", "c161sex: Female", "neg_c_7: 15.7", "", "c12hour | Predicted | 95% CI", "----------------------------------", " 0 | 66.82 | 63.70, 69.94", " 45 | 55.42 | 52.93, 57.91", " 85 | 45.29 | 42.65, 47.94", " 170 | 23.76 | 19.17, 28.34", "", "Adjusted for:", "* c172code = 1.97" ) ) }) test_that("ggpredict, lm by", { expect_identical(nrow(ggpredict(fit, "c12hour [10:20]")), 11L) expect_identical(nrow(ggpredict(fit, "c12hour [10:20 by=.2]")), 51L) expect_identical(nrow(ggpredict(fit, "c12hour [10:20 by = .2]")), 51L) expect_identical(nrow(ggpredict(fit, "c12hour [10:20by=.2]")), 51L) }) test_that("ggpredict, lm-vcov", { expect_s3_class(ggpredict(fit, c("c12hour", "c161sex"), vcov_fun = "vcovHC", vcov_type = "HC1"), "data.frame") }) test_that("ggpredict, lm-prediction-interval", { pr <- ggpredict(fit, c("c12hour", "c161sex"), interval = "predict") expect_equal(pr$conf.low[1], 27.36046, tolerance = 1e-4) pr <- ggpredict(fit, c("c12hour", "c161sex"), interval = "conf") expect_equal(pr$conf.low[1], 71.0235294, tolerance = 1e-4) pr <- ggpredict(fit, c("c12hour", "c161sex"), interval = "predict", vcov_fun = "vcovHC", vcov_type = "HC1") expect_equal(pr$conf.low[1], 27.37019, tolerance = 1e-4) expect_s3_class(ggpredict(fit, c("c12hour", "c161sex"), interval = "predict", ci_level = NA), "data.frame") expect_s3_class(ggpredict(fit, c("c12hour", "c161sex"), interval = "conf", ci_level = NA), "data.frame") }) test_that("ggpredict, lm-noci", { expect_s3_class(ggpredict(fit, c("c12hour", "c161sex"), ci_level = NA), "data.frame") }) test_that("ggpredict, lm, ci_level", { expect_s3_class(ggpredict(fit, "c12hour", ci_level = 0.8), "data.frame") expect_s3_class(ggpredict(fit, c("c12hour", "c161sex"), ci_level = 0.8), "data.frame") expect_s3_class(ggpredict(fit, c("c12hour", "c161sex", "c172code"), ci_level = 0.8), "data.frame") }) test_that("ggpredict, lm, typical", { expect_s3_class(ggpredict(fit, "c12hour", ci_level = 0.8, typical = "median"), "data.frame") expect_s3_class(ggpredict(fit, c("c12hour", "c161sex"), ci_level = 0.8, typical = "median"), "data.frame") expect_s3_class( ggpredict(fit, c("c12hour", "c161sex", "c172code"), ci_level = 0.8, typical = "median"), "data.frame" ) }) test_that("ggpredict, lm, condition", { expect_s3_class( ggpredict(fit, "c172code", condition = c(c12hour = 40), ci_level = 0.8, typical = "median"), "data.frame" ) expect_s3_class( ggpredict( fit, c("c172code", "c161sex"), condition = c(c12hour = 40), ci_level = 0.8, typical = "median" ), "data.frame" ) }) test_that("ggpredict, lm, pretty", { expect_s3_class( ggpredict(fit, "c12hour", full.data = TRUE, ci_level = 0.8, typical = "median"), "data.frame" ) expect_s3_class( ggpredict(fit, c("c12hour", "c161sex"), full.data = TRUE, ci_level = 0.8, typical = "median"), "data.frame" ) }) test_that("ggpredict, lm, full.data", { expect_s3_class(ggpredict(fit, "c172code", full.data = TRUE, ci_level = 0.8, typical = "median"), "data.frame") expect_s3_class( ggpredict(fit, c("c172code", "c161sex"), full.data = TRUE, ci_level = 0.8, typical = "median"), "data.frame" ) }) test_that("ggeffect, lm", { expect_s3_class(ggeffect(fit, "c12hour"), "data.frame") expect_s3_class(ggeffect(fit, c("c12hour", "c161sex")), "data.frame") expect_s3_class(ggeffect(fit, c("c12hour", "c161sex", "c172code")), "data.frame") }) test_that("ggemmeans, lm", { expect_s3_class(ggemmeans(fit, "c12hour"), "data.frame") expect_s3_class(ggemmeans(fit, c("c12hour", "c161sex")), "data.frame") expect_s3_class(ggemmeans(fit, c("c12hour", "c161sex", "c172code")), "data.frame") }) test_that("ggemmeans, lm, ci_level", { expect_s3_class(ggemmeans(fit, "c12hour", ci_level = 0.8), "data.frame") expect_s3_class(ggemmeans(fit, c("c12hour", "c161sex"), ci_level = 0.8), "data.frame") expect_s3_class(ggemmeans(fit, c("c12hour", "c161sex", "c172code"), ci_level = 0.8), "data.frame") }) test_that("ggemmeans, lm, typical", { expect_s3_class(ggemmeans(fit, "c12hour", ci_level = 0.8, typical = "median"), "data.frame") expect_s3_class(ggemmeans(fit, c("c12hour", "c161sex"), ci_level = 0.8, typical = "median"), "data.frame") expect_s3_class(ggemmeans(fit, c("c12hour", "c161sex", "c172code"), ci_level = 0.8, typical = "median"), "data.frame") }) test_that("ggemmeans, lm, condition", { expect_s3_class(ggemmeans(fit, "c172code", condition = c(c12hour = 40), ci_level = 0.8, typical = "median"), "data.frame") expect_s3_class(ggemmeans(fit, c("c172code", "c161sex"), condition = c(c12hour = 40), ci_level = 0.8, typical = "median"), "data.frame") }) test_that("ggemmeans, lm, pretty", { expect_s3_class(ggemmeans(fit, "c12hour", full.data = TRUE, ci_level = 0.8, typical = "median"), "data.frame") expect_s3_class(ggemmeans(fit, c("c12hour", "c161sex"), full.data = TRUE, ci_level = 0.8, typical = "median"), "data.frame") }) data(efc, package = "ggeffects") efc$c172code <- sjlabelled::to_label(efc$c172code) fit <- lm(barthtot ~ c12hour + neg_c_7 + c161sex + c172code, data = efc) test_that("ggpredict, lm", { expect_s3_class(ggpredict(fit, "c12hour [20,30,40]"), "data.frame") expect_s3_class(ggpredict(fit, "c12hour [30:60]"), "data.frame") expect_s3_class(ggpredict(fit, c("c12hour [30:60]", "c161sex", "c172code [high level of education,low level of education]")), "data.frame") }) test_that("ggpredict, lm", { expect_s3_class(ggpredict(fit, "c12hour [meansd]"), "data.frame") expect_s3_class(ggpredict(fit, "c12hour [minmax]"), "data.frame") expect_s3_class(ggpredict(fit, c("c12hour [quart]", "c161sex", "c172code [high level of education,low level of education]")), "data.frame") expect_s3_class(ggpredict(fit, c("c12hour [zeromax]", "c161sex", "c172code [high level of education,low level of education]")), "data.frame") expect_s3_class(ggpredict(fit, c("c12hour [quart2]", "c161sex", "c172code [high level of education,low level of education]")), "data.frame") }) test_that("ggeffect, lm", { expect_s3_class(ggeffect(fit, "c12hour [20,30,40]"), "data.frame") expect_s3_class(ggeffect(fit, "c12hour [30:60]"), "data.frame") expect_s3_class(ggeffect(fit, c("c12hour [30:60]", "c161sex", "c172code [high level of education,low level of education]")), "data.frame") }) test_that("ggeffect, lm", { expect_s3_class(ggeffect(fit, "c12hour [meansd]"), "data.frame") expect_s3_class(ggeffect(fit, "c12hour [minmax]"), "data.frame") expect_s3_class(ggeffect(fit, c("c12hour [quart]", "c161sex", "c172code [high level of education,low level of education]")), "data.frame") expect_s3_class(ggeffect(fit, c("c12hour [zeromax]", "c161sex", "c172code [high level of education,low level of education]")), "data.frame") expect_s3_class(ggeffect(fit, c("c12hour [quart2]", "c161sex", "c172code [high level of education,low level of education]")), "data.frame") }) test_that("ggemmeans, lm", { expect_s3_class(ggemmeans(fit, "c12hour [20,30,40]"), "data.frame") expect_s3_class(ggemmeans(fit, "c12hour [30:60]"), "data.frame") expect_s3_class(ggemmeans(fit, c("c12hour [30:60]", "c161sex", "c172code [high level of education,low level of education]")), "data.frame") out1 <- ggemmeans(fit, "c12hour [20,30,40]") out2 <- emmeans::emmeans( fit, "c12hour", at = list(c12hour = c(20, 30, 40), c161sex = mean(efc$c161sex, na.rm = TRUE), neg_c_7 = mean(efc$neg_c_7, na.rm = TRUE)) ) expect_equal(out1$predicted, as.data.frame(out2)$emmean, tolerance = 1e-1) # predict_response() works out3 <- predict_response(fit, "c12hour [20,30,40]", margin = "marginalmeans") expect_equal(out1$predicted, out3$predicted, tolerance = 1e-1) # ggemmeans() and predict_response() should be identical expect_identical(out1, out3) }) test_that("ggemmeans, lm", { expect_s3_class(ggemmeans(fit, "c12hour [meansd]"), "data.frame") expect_s3_class(ggemmeans(fit, "c12hour [minmax]"), "data.frame") expect_s3_class(ggemmeans(fit, c("c12hour [quart]", "c161sex", "c172code [high level of education,low level of education]")), "data.frame") expect_s3_class(ggemmeans(fit, c("c12hour [zeromax]", "c161sex", "c172code [high level of education,low level of education]")), "data.frame") expect_s3_class(ggemmeans(fit, c("c12hour [quart2]", "c161sex", "c172code [high level of education,low level of education]")), "data.frame") }) data(efc, package = "ggeffects") efc$c172code <- sjlabelled::to_label(efc$c172code) fit <- lm(barthtot ~ log(c12hour) + c161sex + c172code, data = efc) test_that("ggpredict, lm, log", { expect_warning(ggpredict(fit, "c12hour [meansd]")) expect_s3_class(ggpredict(fit, "c12hour [minmax]"), "data.frame") expect_s3_class(ggpredict(fit, c("c12hour", "c172code [high level of education,low level of education]")), "data.frame") expect_s3_class(ggpredict(fit, c("c12hour [exp]", "c172code [high level of education,low level of education]")), "data.frame") }) test_that("ggeffect, lm, log", { expect_s3_class(ggeffect(fit, "c12hour [meansd]"), "data.frame") expect_s3_class(ggeffect(fit, "c12hour [minmax]"), "data.frame") expect_s3_class(ggeffect(fit, c("c12hour", "c172code [high level of education,low level of education]")), "data.frame") expect_s3_class(suppressWarnings(ggeffect(fit, c("c12hour [exp]", "c172code [high level of education,low level of education]"))), "data.frame") }) test_that("ggeffect, lm, no_space", { expect_s3_class(ggeffect(fit, "c12hour[meansd]"), "data.frame") expect_s3_class(ggeffect(fit, "c12hour[minmax]"), "data.frame") expect_s3_class(ggeffect(fit, c("c12hour", "c172code[high level of education,low level of education]")), "data.frame") expect_s3_class(suppressWarnings(ggeffect(fit, c("c12hour[exp]", "c172code[high level of education,low level of education]"))), "data.frame") }) test_that("ggemmeans, lm, log", { expect_s3_class(ggemmeans(fit, "c12hour [meansd]"), "data.frame") expect_s3_class(ggemmeans(fit, "c12hour [minmax]"), "data.frame") expect_s3_class(ggemmeans(fit, c("c12hour", "c172code [high level of education,low level of education]")), "data.frame") expect_s3_class(ggemmeans(fit, c("c12hour [exp]", "c172code [high level of education,low level of education]")), "data.frame") }) test_that("ggemmeans, lm, no_space", { expect_s3_class(ggemmeans(fit, "c12hour[meansd]"), "data.frame") expect_s3_class(ggemmeans(fit, "c12hour[minmax]"), "data.frame") expect_s3_class(ggemmeans(fit, c("c12hour", "c172code[high level of education,low level of education]")), "data.frame") expect_s3_class(ggemmeans(fit, c("c12hour[exp]", "c172code[high level of education,low level of education]")), "data.frame") }) test_that("ggpredict, lm formula", { expect_s3_class(ggpredict(fit, ~ c12hour), "data.frame") expect_s3_class(ggpredict(fit, ~ c12hour + c161sex), "data.frame") expect_s3_class(ggpredict(fit, ~ c12hour + c161sex + c172code), "data.frame") }) d <- subset(efc, select = c(barthtot, c12hour, neg_c_7, c172code)) d <- na.omit(d) m1 <- lm(barthtot ~ c12hour + poly(neg_c_7, 2) + c172code, data = d) m2 <- lm(barthtot ~ c12hour + poly(neg_c_7, 3, raw = TRUE) + c172code, data = d) m3 <- lm(barthtot ~ scale(c12hour) + poly(neg_c_7, 2) + c172code, data = d) test_that("ggpredict, lm", { expect_s3_class(ggpredict(m1, "neg_c_7"), "data.frame") expect_s3_class(ggpredict(m2, "neg_c_7"), "data.frame") expect_s3_class(ggpredict(m3, "neg_c_7"), "data.frame") expect_s3_class(ggpredict(m3, "c12hour"), "data.frame") }) test_that("ggemmeans, lm", { expect_s3_class(ggemmeans(m1, "neg_c_7"), "data.frame") expect_s3_class(ggemmeans(m2, "neg_c_7"), "data.frame") expect_s3_class(ggemmeans(m3, "neg_c_7"), "data.frame") expect_s3_class(ggemmeans(m3, "c12hour"), "data.frame") }) data(efc, package = "ggeffects") fit <- lm(barthtot ~ c12hour + neg_c_7, data = efc) test_that("ggemmeans, lm", { p1 <- ggemmeans(fit, "neg_c_7") p2 <- ggeffect(fit, "neg_c_7") p3 <- ggpredict(fit, "neg_c_7") p4 <- predict_response(fit, "neg_c_7", margin = "marginalmeans") expect_equal(p1$predicted[1], 78.2641, tolerance = 1e-3) expect_equal(p2$predicted[1], 78.2641, tolerance = 1e-3) expect_equal(p3$predicted[1], 78.2641, tolerance = 1e-3) expect_equal(p4$predicted[1], p1$predicted[1], tolerance = 1e-3) }) test_that("ggemmeans, lm", { p1 <- ggemmeans(fit, "neg_c_7 [5,10]") p2 <- ggeffect(fit, "neg_c_7 [5,10]") p3 <- ggpredict(fit, "neg_c_7 [5,10]") expect_equal(p1$predicted[1], 80.58504, tolerance = 1e-3) expect_equal(p2$predicted[1], 80.58504, tolerance = 1e-3) expect_equal(p3$predicted[1], 80.58504, tolerance = 1e-3) }) skip_if_not_installed("marginaleffects") test_that("ggaverage, lm", { data(efc, package = "ggeffects") fit <- lm(neg_c_7 ~ barthtot + grp + c12hour + nur_pst, data = efc) out1 <- ggaverage(fit, "nur_pst") out2 <- marginaleffects::avg_predictions(fit, variables = "nur_pst") expect_equal(out1$predicted, out2$estimate[order(out2$nur_pst)], tolerance = 1e-4) }) test_that("difference in predictions identical", { data(efc, package = "ggeffects") fit <- lm(neg_c_7 ~ barthtot + grp + c12hour + nur_pst, data = efc) out1 <- predict_response(fit, "nur_pst", margin = "mean_reference") out2 <- predict_response(fit, "nur_pst", margin = "mean_mode") out3 <- predict_response(fit, "nur_pst", margin = "marginalmeans") out4 <- predict_response(fit, "nur_pst", margin = "ame") expect_equal(diff(out1$predicted), diff(out2$predicted), tolerance = 1e-4) expect_equal(diff(out2$predicted), diff(out3$predicted), tolerance = 1e-4) expect_equal(diff(out3$predicted), diff(out4$predicted), tolerance = 1e-4) })