skip_on_os(c("mac", "solaris")) skip_on_cran() skip_if_not_installed("lme4") skip_if_not_installed("glmmTMB") skip_if_not_installed("emmeans") skip_if_not_installed("effects") skip_if_not_installed("withr") test_that("ggpredict, lme4::glmer", { data(efc_test) fit <- lme4::glmer( negc7d ~ c12hour + e42dep + c161sex + c172code + (1 | grp), data = efc_test, family = binomial(link = "logit") ) pr <- ggpredict(fit, "c12hour", verbose = FALSE) expect_equal( pr$predicted, c(0.34217, 0.34406, 0.34596, 0.34787, 0.34978, 0.3517, 0.35362, 0.35554, 0.35747, 0.35941, 0.36135, 0.36329, 0.36524, 0.36719, 0.36915, 0.37111, 0.37307, 0.37504, 0.37702, 0.37899, 0.38098, 0.38296, 0.38495, 0.38694, 0.38894, 0.39094, 0.39295, 0.39496, 0.39697, 0.39898, 0.401, 0.40302, 0.40505, 0.40708, 0.40911), tolerance = 1e-3, ignore_attr = TRUE ) expect_message(ggpredict(fit, "c12hour"), "prettified") expect_silent(ggpredict(fit, "c12hour", verbose = FALSE)) expect_s3_class(ggpredict(fit, "c12hour", verbose = FALSE), "data.frame") expect_s3_class(ggpredict(fit, c("c12hour", "c161sex"), verbose = FALSE), "data.frame") expect_s3_class(ggpredict(fit, c("c12hour", "c161sex", "c172code"), verbose = FALSE), "data.frame") expect_s3_class(ggpredict(fit, "c12hour", type = "random", verbose = FALSE), "data.frame") expect_s3_class(ggpredict(fit, c("c12hour", "c161sex"), type = "random", verbose = FALSE), "data.frame") expect_s3_class(ggpredict(fit, c("c12hour", "c161sex", "c172code"), type = "random", verbose = FALSE), "data.frame") }) test_that("ggpredict, lme4::glmer, conf int, validate against predict", { data(efc_test) fit <- lme4::glmer( negc7d ~ c12hour + e42dep + c161sex + c172code + (1 | grp), data = efc_test, family = binomial(link = "logit") ) nd <- data_grid(fit, "c12hour") pr <- ggpredict(fit, "c12hour", verbose = FALSE) pr2 <- suppressWarnings(predict( fit, newdata = nd, se.fit = TRUE, re.form = NA, allow.new.levels = TRUE, type = "link" )) expect_equal( pr$predicted, plogis(pr2$fit), tolerance = 1e-3, ignore_attr = TRUE ) expect_equal( pr$conf.low, plogis(pr2$fit - qt(0.975, Inf) * pr2$se.fit), tolerance = 1e-3, ignore_attr = TRUE ) }) test_that("ggeffect, lme4::glmer", { data(efc_test) fit <- lme4::glmer( negc7d ~ c12hour + e42dep + c161sex + c172code + (1 | grp), data = efc_test, family = binomial(link = "logit") ) pr <- ggeffect(fit, "c12hour") expect_equal( pr$predicted, c(0.34217, 0.34406, 0.34596, 0.34787, 0.34978, 0.3517, 0.35362, 0.35554, 0.35747, 0.35941, 0.36135, 0.36329, 0.36524, 0.36719, 0.36915, 0.37111, 0.37307, 0.37504, 0.37702, 0.37899, 0.38098, 0.38296, 0.38495, 0.38694, 0.38894, 0.39094, 0.39295, 0.39496, 0.39697, 0.39898, 0.401, 0.40302, 0.40505, 0.40708, 0.40911), tolerance = 1e-3, ignore_attr = TRUE ) expect_equal( pr$conf.low, c( 0.24901, 0.25138, 0.25363, 0.25576, 0.25777, 0.25965, 0.2614, 0.26302, 0.2645, 0.26585, 0.26706, 0.26814, 0.26909, 0.2699, 0.27059, 0.27115, 0.2716, 0.27192, 0.27214, 0.27225, 0.27226, 0.27217, 0.272, 0.27173, 0.27139, 0.27096, 0.27047, 0.26991, 0.26928, 0.2686, 0.26786, 0.26707, 0.26623, 0.26534, 0.26441 ), tolerance = 1e-3, ignore_attr = TRUE ) expect_s3_class(ggeffect(fit, "c12hour"), "data.frame") expect_s3_class(ggeffect(fit, c("c12hour", "c161sex")), "data.frame") expect_s3_class(ggeffect(fit, c("c12hour", "c161sex", "c172code")), "data.frame") }) test_that("ggemmeans, lme4::glmer", { data(efc_test) fit <- lme4::glmer( negc7d ~ c12hour + e42dep + c161sex + c172code + (1 | grp), data = efc_test, family = binomial(link = "logit") ) pr <- ggemmeans(fit, "c12hour", verbose = FALSE) expect_equal( pr$predicted, c(0.34217, 0.34406, 0.34596, 0.34787, 0.34978, 0.3517, 0.35362, 0.35554, 0.35747, 0.35941, 0.36135, 0.36329, 0.36524, 0.36719, 0.36915, 0.37111, 0.37307, 0.37504, 0.37702, 0.37899, 0.38098, 0.38296, 0.38495, 0.38694, 0.38894, 0.39094, 0.39295, 0.39496, 0.39697, 0.39898, 0.401, 0.40302, 0.40505, 0.40708, 0.40911), tolerance = 1e-3, ignore_attr = TRUE ) expect_s3_class(ggemmeans(fit, "c12hour", verbose = FALSE), "data.frame") expect_s3_class(ggemmeans(fit, c("c12hour", "c161sex"), verbose = FALSE), "data.frame") expect_s3_class(ggemmeans(fit, c("c12hour", "c161sex", "c172code"), verbose = FALSE), "data.frame") }) withr::with_environment( new.env(), test_that("ggpredict, lme4::glmer.nb", { m <- insight::download_model("merMod_5") dd <- insight::get_data(m, source = "frame") expect_s3_class(ggpredict(m, "f1"), "data.frame") expect_s3_class(ggpredict(m, "f1", type = "random"), "data.frame") expect_s3_class(ggpredict(m, c("f1", "f2")), "data.frame") expect_s3_class(ggpredict(m, c("f1", "f2"), type = "random"), "data.frame") expect_message(ggemmeans(m, "f1")) expect_s3_class(ggemmeans(m, c("f1", "f2")), "data.frame") expect_s3_class(ggpredict(m, c("f1", "f2"), type = "simulate"), "data.frame") }) ) test_that("ggpredict, lme4::glmer, cbind", { data(cbpp, package = "lme4") cbpp$trials <- cbpp$size - cbpp$incidence m1 <- lme4::glmer(cbind(incidence, trials) ~ period + (1 | herd), data = cbpp, family = binomial) m2 <- lme4::glmer(cbind(incidence, size - incidence) ~ period + (1 | herd), data = cbpp, family = binomial) expect_s3_class(ggpredict(m1, "period"), "data.frame") expect_s3_class(ggpredict(m2, "period"), "data.frame") expect_s3_class(ggpredict(m1, "period", type = "random"), "data.frame") expect_s3_class(ggpredict(m2, "period", type = "random"), "data.frame") expect_s3_class(ggemmeans(m1, "period"), "data.frame") expect_s3_class(ggemmeans(m2, "period"), "data.frame") p1 <- ggpredict(m1, "period") p2 <- ggemmeans(m1, "period") expect_equal(p1$predicted[1], p2$predicted[1], tolerance = 1e-3) })