skip_on_os(c("mac", "solaris")) skip_if_not_installed("effects") skip_if_not_installed("emmeans") skip_if_not_installed("parsnip") skip_if_not_installed("sjlabelled") # lm, linear regression ---- data(efc, package = "ggeffects") fit <- parsnip::fit(parsnip::linear_reg(), barthtot ~ c12hour + neg_c_7 + c161sex + c172code, data = efc) test_that("validate ggpredict parsnip against predict", { nd <- data_grid(fit, "c12hour [10, 50, 100]") pr <- predict(fit, new_data = nd) predicted <- ggpredict(fit, "c12hour [10, 50, 100]") expect_equal(predicted$predicted, pr[[".pred"]], tolerance = 1e-3, ignore_attr = TRUE) nd <- data_grid(fit, c("c12hour [10, 50, 100]", "c161sex", "c172code")) pr <- cbind(predict(fit, new_data = nd), nd) pr <- pr[order(pr$c12hour, pr$c161sex, pr$c172code), ] predicted <- ggpredict(fit, c("c12hour [10, 50, 100]", "c161sex", "c172code")) expect_equal(predicted$predicted, pr[[".pred"]], tolerance = 1e-3, ignore_attr = TRUE) }) test_that("ggpredict, parsnip print", { x <- ggpredict(fit, c("c12hour", "c161sex", "c172code")) out <- utils::capture.output(print(x, verbose = FALSE)) expect_identical( out, c( "# Predicted values of Total score BARTHEL INDEX", "", "c161sex: Male", "c172code: [1] low level of education", "", "c12hour | Predicted | 95% CI", "----------------------------------", " 0 | 75.00 | 71.40, 78.59", " 45 | 63.60 | 60.45, 66.74", " 85 | 53.46 | 50.12, 56.80", " 170 | 31.93 | 26.82, 37.05", "", "c161sex: Male", "c172code: [2] intermediate level of education", "", "c12hour | Predicted | 95% CI", "----------------------------------", " 0 | 75.71 | 73.31, 78.12", " 45 | 64.32 | 62.41, 66.22", " 85 | 54.18 | 51.81, 56.56", " 170 | 32.65 | 27.94, 37.37", "", "c161sex: Male", "c172code: [3] high level of education", "", "c12hour | Predicted | 95% CI", "----------------------------------", " 0 | 76.43 | 72.88, 79.98", " 45 | 65.03 | 61.67, 68.39", " 85 | 54.90 | 51.15, 58.65", " 170 | 33.37 | 27.69, 39.05", "", "c161sex: Female", "c172code: [1] low level of education", "", "c12hour | Predicted | 95% CI", "----------------------------------", " 0 | 73.95 | 69.35, 78.56", " 45 | 62.56 | 58.22, 66.89", " 85 | 52.42 | 47.89, 56.96", " 170 | 30.89 | 24.84, 36.95", "", "c161sex: Female", "c172code: [2] intermediate level of education", "", "c12hour | Predicted | 95% CI", "----------------------------------", " 0 | 74.67 | 71.05, 78.29", " 45 | 63.27 | 59.88, 66.67", " 85 | 53.14 | 49.39, 56.89", " 170 | 31.61 | 25.97, 37.25", "", "c161sex: Female", "c172code: [3] high level of education", "", "c12hour | Predicted | 95% CI", "----------------------------------", " 0 | 75.39 | 71.03, 79.75", " 45 | 63.99 | 59.72, 68.26", " 85 | 53.86 | 49.22, 58.50", " 170 | 32.33 | 25.94, 38.72", "", "Adjusted for:", "* neg_c_7 = 11.84" ) ) x <- ggpredict(fit, c("c12hour", "c161sex", "neg_c_7"), verbose = FALSE) out <- utils::capture.output(print(x)) expect_identical( out, c( "# Predicted values of Total score BARTHEL INDEX", "", "c161sex: Male", "neg_c_7: 8", "", "c12hour | Predicted | 95% CI", "----------------------------------", " 0 | 75.78 | 73.38, 78.19", " 45 | 64.38 | 62.48, 66.28", " 85 | 54.25 | 51.88, 56.62", " 170 | 32.72 | 28.01, 37.43", "", "c161sex: Male", "neg_c_7: 11.8", "", "c12hour | Predicted | 95% CI", "----------------------------------", " 0 | 66.82 | 63.70, 69.94", " 45 | 55.42 | 52.93, 57.91", " 85 | 45.29 | 42.65, 47.94", " 170 | 23.76 | 19.17, 28.34", "", "c161sex: Male", "neg_c_7: 15.7", "", "c12hour | Predicted | 95% CI", "----------------------------------", " 0 | 84.51 | 81.74, 87.27", " 45 | 73.11 | 70.51, 75.72", " 85 | 62.98 | 59.82, 66.14", " 170 | 41.45 | 36.06, 46.84", "", "c161sex: Female", "neg_c_7: 8", "", "c12hour | Predicted | 95% CI", "----------------------------------", " 0 | 74.74 | 71.11, 78.36", " 45 | 63.34 | 59.94, 66.74", " 85 | 53.21 | 49.46, 56.96", " 170 | 31.68 | 26.04, 37.31", "", "c161sex: Female", "neg_c_7: 11.8", "", "c12hour | Predicted | 95% CI", "----------------------------------", " 0 | 65.78 | 61.53, 70.03", " 45 | 54.38 | 50.49, 58.27", " 85 | 44.25 | 40.20, 48.30", " 170 | 22.72 | 17.10, 28.33", "", "c161sex: Female", "neg_c_7: 15.7", "", "c12hour | Predicted | 95% CI", "----------------------------------", " 0 | 83.47 | 79.72, 87.22", " 45 | 72.07 | 68.36, 75.78", " 85 | 61.94 | 57.76, 66.12", " 170 | 40.41 | 34.27, 46.55", "", "Adjusted for:", "* c172code = 1.97" ) ) }) test_that("ggemmeans, parsnip", { expect_s3_class(ggemmeans(fit, "c12hour [meansd]"), "data.frame") expect_s3_class(ggemmeans(fit, "c12hour [minmax]"), "data.frame") }) test_that("test_predictions, parsnip", { skip_on_os("linux") out <- test_predictions(fit, "c172code") expect_equal(out$Slope, 0.71836, tolerance = 0.1) expect_equal(out$conf.low, -1.928975, tolerance = 0.1) })