skip_on_os(c("mac", "solaris")) skip_if_not_installed("MASS") skip_if_not_installed("datawizard") test_that("ggpredict, negbin", { data(efc, package = "ggeffects") efc$e42dep <- datawizard::to_factor(efc$e42dep) fit <- MASS::glm.nb( tot_sc_e ~ neg_c_7 + I(neg_c_7^2) + neg_c_7:e42dep + I(neg_c_7^2):e42dep + c12hour + c172code, data = efc, init.theta = 1.133641349, link = log ) expect_s3_class(ggpredict(fit, "neg_c_7"), "data.frame") expect_s3_class(ggeffect(fit, "neg_c_7"), "data.frame") expect_s3_class(ggemmeans(fit, "neg_c_7"), "data.frame") expect_s3_class(ggpredict(fit, c("neg_c_7", "e42dep")), "data.frame") expect_s3_class(ggeffect(fit, c("neg_c_7", "e42dep")), "data.frame") expect_s3_class(ggemmeans(fit, c("neg_c_7", "e42dep")), "data.frame") # validate against predict() pr1 <- predict(fit, newdata = data_grid(fit, "neg_c_7")) pr2 <- ggpredict(fit, "neg_c_7") expect_equal( insight::link_inverse(fit)(pr1), pr2$predicted, tolerance = 1e-4, ignore_attr = TRUE ) }) test_that("ggpredict, negbin", { data(efc, package = "ggeffects") fit <- MASS::glm.nb( tot_sc_e ~ neg_c_7 + I(neg_c_7^2) + neg_c_7:e42dep + I(neg_c_7^2):e42dep + c12hour + c172code, data = efc, init.theta = 1.133641349, link = log ) expect_s3_class(ggpredict(fit, "neg_c_7"), "data.frame") expect_s3_class(ggeffect(fit, "neg_c_7"), "data.frame") expect_s3_class(ggemmeans(fit, "neg_c_7"), "data.frame") expect_s3_class(ggpredict(fit, c("neg_c_7", "e42dep")), "data.frame") expect_s3_class(ggeffect(fit, c("neg_c_7", "e42dep")), "data.frame") expect_s3_class(ggemmeans(fit, c("neg_c_7", "e42dep")), "data.frame") })