skip_on_cran() skip_on_os(c("mac", "solaris")) skip_if_not_installed("VGAM") unloadNamespace("gam") test_that("ggpredict", { d.AD <- data.frame( treatment = gl(3, 3), outcome = gl(3, 1, 9), counts = c(18, 17, 15, 20, 10, 20, 25, 13, 12) ) m1 <- VGAM::vglm( counts ~ outcome + treatment, family = VGAM::poissonff, data = d.AD, trace = TRUE ) p <- ggpredict(m1, "outcome") expect_equal(p$predicted[1], 21, tolerance = 1e-3) }) test_that("ggpredict", { set.seed(123) N <- 100 X1 <- rnorm(N, 175, 7) X2 <- rnorm(N, 30, 8) Ycont <- 0.5 * X1 - 0.3 * X2 + 10 + rnorm(N, 0, 6) Yord <- cut( Ycont, breaks = quantile(Ycont), include.lowest = TRUE, labels = c("--", "-", "+", "++"), ordered = TRUE ) dfOrd <- data.frame(X1, X2, Yord) m2 <- VGAM::vglm(Yord ~ X1 + X2, family = VGAM::propodds, data = dfOrd) p <- ggpredict(m2, terms = "X1") expect_equal(p$predicted[1], 0.2633227, tolerance = 1e-3) expect_identical(nrow(p), 27L) p <- ggpredict(m2, terms = "X1", ci_level = NA) expect_equal(p$predicted[1], 0.7366773, tolerance = 1e-3) expect_identical(nrow(p), 36L) }) test_that("ggpredict", { data(pneumo, package = "VGAM") pneumo <- transform(pneumo, let = log(exposure.time)) m3 <- VGAM::vglm(cbind(normal, mild, severe) ~ let, VGAM::propodds, data = pneumo) p <- ggpredict(m3, "let") expect_equal(p$predicted[1], 0.005992263, tolerance = 1e-3) expect_identical(nrow(p), 16L) p <- ggpredict(m3, "let", ci_level = NA) expect_equal(p$predicted[1], 0.9940077, tolerance = 1e-3) expect_identical(nrow(p), 24L) })