# Tests for dots geoms and stats # # Author: mjskay ############################################################################### library(dplyr) library(tidyr) library(distributional) test_that("vanilla dots geoms and stats work", { skip_if_no_vdiffr() set.seed(1234) p = tribble( ~dist, ~x, "norm", rnorm(20), "t", rt(20, 3) ) %>% unnest(x) %>% ggplot() vdiffr::expect_doppelganger("vanilla geom_dots", p + geom_dots(aes(x = dist, y = x)) ) vdiffr::expect_doppelganger("vanilla geom_dotsh", p + geom_dots(aes(y = dist, x = x)) ) vdiffr::expect_doppelganger("stat_dotsh with a group with 1 dot", p + stat_dots(aes(y = dist, x = x, color = x > 2)) ) vdiffr::expect_doppelganger("stat_dotsh with a group with 2 dots", p + stat_dots(aes(y = dist, x = x, color = x > 1)) ) set.seed(1234) p = tribble( ~dist, ~x, ~datatype, "norm", rnorm(20), "slab", "t", rt(20, 3), "slab" ) %>% unnest(x) %>% bind_rows(tribble( ~ dist, ~x, ~datatype, ~lower, ~upper, "norm", 0, "interval", -1, 1, "t", 0, "interval", -2, 2 )) %>% ggplot() vdiffr::expect_doppelganger("vanilla geom_dotsinterval", p + geom_dotsinterval(aes(y = dist, x = x, xmin = lower, xmax = upper, datatype = datatype)) ) set.seed(1234) p = tribble( ~dist, ~x, "norm", rnorm(100), "t", rt(100, 3) ) %>% unnest(x) %>% ggplot() vdiffr::expect_doppelganger("vanilla stat_dotsinterval", p + stat_dotsinterval(aes(x = dist, y = x), quantiles = 20) ) vdiffr::expect_doppelganger("vanilla stat_dotsintervalh", p + stat_dotsinterval(aes(y = dist, x = x), quantiles = 20) ) }) # scale_ and coord_ transformations ---------------------------------------------- test_that("coordinate transformations work", { skip_if_no_vdiffr() set.seed(1234) p = tribble( ~dist, ~x, ~datatype, "norm", rnorm(20), "slab", "t", rt(20, 3), "slab" ) %>% unnest(x) %>% bind_rows(tribble( ~ dist, ~x, ~datatype, ~lower, ~upper, "norm", 0, "interval", -1, 1, "t", 0, "interval", -2, 2 )) %>% ggplot() + geom_dotsinterval(aes(y = dist, x = x, xmin = lower, xmax = upper, datatype = datatype)) vdiffr::expect_doppelganger("coord_flip with dotsinterval", p + coord_flip() ) expect_error( print(p + coord_polar(), newpage = FALSE), "geom_dotsinterval does not work properly with non-linear coordinates" ) }) test_that("scale transformations work", { skip_if_no_vdiffr() p = data.frame(x = dist_sample(list(qlnorm(ppoints(20))))) %>% ggplot(aes(xdist = x, y = 0)) vdiffr::expect_doppelganger("transformed scale with dist_sample", p + stat_dist_dotsinterval() + scale_x_log10() ) p = data.frame(x = qlnorm(ppoints(20))) %>% ggplot(aes(x = x, y = 0)) vdiffr::expect_doppelganger("transformed scale with sample data on x", p + stat_dist_dotsinterval() + scale_x_log10() ) p = data.frame(x = qlnorm(ppoints(100))) %>% ggplot(aes(x = x, y = 0)) vdiffr::expect_doppelganger("transformed scale, sample data, quantiles", p + stat_dist_dotsinterval(quantiles = 20) + scale_x_log10() ) }) # dists ------------------------------------------------------------------- test_that("stat_dist_dots[interval] works", { skip_if_no_vdiffr() p = tribble( ~dist, ~args, "norm", list(0, 1), "t", list(3) ) %>% ggplot(aes(dist = dist, args = args)) vdiffr::expect_doppelganger("vanilla stat_dist_dots", p + stat_dist_dots(aes(x = dist), n = 20, quantiles = 20) ) vdiffr::expect_doppelganger("vanilla stat_dist_dotsinterval", p + stat_dist_dotsinterval(aes(x = dist), n = 20, quantiles = 20) ) vdiffr::expect_doppelganger("vanilla stat_dist_dotsintervalh", p + stat_dist_dotsinterval(aes(y = dist), n = 20, quantiles = 20) ) }) test_that("stat_dist_dots works on NA data", { skip_if_no_vdiffr() p = data.frame( x = c("norm", NA, "norm"), y = c("a","b", NA) ) %>% ggplot(aes(dist = x, y = y)) expect_warning(vdiffr::expect_doppelganger("stat_dist_dots with na.rm = FALSE", p + stat_dist_dots(na.rm = FALSE, quantiles = 20) ), "Removed 1 row") vdiffr::expect_doppelganger("stat_dist_dots with na.rm = TRUE", p + stat_dist_dots(na.rm = TRUE, quantiles = 20) ) }) test_that("stat_dist_dots works on distributional objects", { skip_if_no_vdiffr() p = data.frame( x = dist_normal(0:1, 1:2), y = c("a","b") ) %>% ggplot(aes(dist = x, y = y)) vdiffr::expect_doppelganger("stat_dist_dots with dist_normal", p + stat_dist_dots(quantiles = 20) ) }) # binwidth ----------------------------------------------------- test_that("geom_dots binwidth can be specified in unit()s", { skip_if_no_vdiffr() # these dots should be the same size (10% of facet height) vdiffr::expect_doppelganger("geom_dots with unit() binwidth", mtcars %>% ggplot(aes(y = mpg)) + geom_dots(binwidth = unit(0.1, "native")) + facet_grid(~ am, scales = "free") ) }) test_that("geom_dots allows constraints on binwidth", { skip_if_no_vdiffr() p = data.frame(x = seq(0, 2, length.out = 20)) %>% ggplot(aes(x = x, y = 0L)) + coord_cartesian(expand = FALSE) # max width of 1/40th of the viewport should approx space # this data with about 1 dot of space in between each dot vdiffr::expect_doppelganger("max binwidth", p + geom_dots(binwidth = unit(c(0, 1/40), "npc")) ) # min width of 1/4th of the viewport should give us four giant bins # also test that verbose = TRUE outputs the binwidth expect_message( vdiffr::expect_doppelganger("min binwidth", p + geom_dots(binwidth = unit(c(1/4, Inf), "npc"), verbose = TRUE) ), 'binwidth = 0\\.5 data units.*unit\\(0\\.25, "npc"\\)' ) }) # layout ------------------------------------------------------------------ test_that("dotplot layouts work", { skip_if_no_vdiffr() df = rbind( cbind(mtcars, side = "top", stringsAsFactors = FALSE), cbind(mtcars, side = "both", stringsAsFactors = FALSE), cbind(mtcars, side = "bottom", stringsAsFactors = FALSE), stringsAsFactors = FALSE ) vdiffr::expect_doppelganger("weave", df %>% ggplot(aes(x = mpg)) + geom_dots(aes(side = side), layout = "weave") + facet_grid(~ side) ) vdiffr::expect_doppelganger("hex", df %>% ggplot(aes(x = mpg)) + geom_dots(aes(side = side), layout = "hex", stackratio = 0.92) + facet_grid(~ side) ) skip_if_not_installed("beeswarm") vdiffr::expect_doppelganger("swarm", df %>% ggplot(aes(x = mpg)) + geom_dots(aes(side = side), layout = "swarm") + facet_grid(~ side) ) vdiffr::expect_doppelganger("swarm vertical", mtcars %>% ggplot(aes(y = mpg)) + geom_dots(layout = "swarm") ) }) test_that("dot order is correct", { skip_if_no_vdiffr() p = data.frame(x = qnorm(ppoints(50)), g = c("a", "b")) %>% ggplot(aes(x = x, fill = after_stat(x < 0), color = g, group = NA)) + scale_fill_brewer(palette = "Set1") + scale_color_brewer(palette = "Paired") vdiffr::expect_doppelganger("bin dot order", p + geom_dots(layout = "bin", linewidth = 5) + geom_vline(xintercept = 0) ) vdiffr::expect_doppelganger("bin dot order, kept", p + geom_dots(aes(order = g), layout = "bin", linewidth = 5) + geom_vline(xintercept = 0) ) vdiffr::expect_doppelganger("weave dot order", p + geom_dots(layout = "weave", linewidth = 5) + geom_vline(xintercept = 0) ) skip_if_not_installed("beeswarm") vdiffr::expect_doppelganger("swarm dot order", p + geom_dots(layout = "swarm", linewidth = 5) + geom_vline(xintercept = 0) ) }) test_that("overflow = compress works", { skip_if_no_vdiffr() vdiffr::expect_doppelganger("overflow = compress", ggplot(mtcars) + geom_dots(aes(x = mpg), binwidth = 4, overflow = "compress", alpha = 0.5) ) }) test_that("bar layout works", { skip_if_no_vdiffr() df = data.frame( x = factor(c(rep(1:5, times = 5:1 * 11), 6, 6, 7)), g = c("a","b") ) vdiffr::expect_doppelganger("bar layout with order", df %>% ggplot(aes(x, fill = g, group = NA, order = g)) + geom_dots(layout = "bar") ) }) # NAs ------------------------------------------------------------------- test_that("na.rm is propagated to quantile dotplot", { skip_if_no_vdiffr() vdiffr::expect_doppelganger("na.rm with quantile arg", data.frame(x = qnorm(ppoints(100), 1)) %>% ggplot(aes(x, y = 0)) + stat_dots(na.rm = TRUE, quantiles = 20) + scale_x_continuous(limits = c(0,4)) ) }) test_that("geom_dots works with NA in non-data axis", { skip_if_no_vdiffr() p = mtcars %>% ggplot(aes(x = mpg, y = factor(cyl))) + scale_y_discrete(limits = c("4", "6")) # without na.rm this should work but also throw a warning expect_warning(vdiffr::expect_doppelganger("NA on y axis", p + geom_dots(na.rm = FALSE) )) # with na.rm this should not throw a warning vdiffr::expect_doppelganger("removed NA on y axis", p + geom_dots(na.rm = TRUE) ) }) test_that("empty slab from NA removal works", { skip_if_no_vdiffr() vdiffr::expect_doppelganger("dots with no slab from NA removal", { data.frame(x = c(1, NA), datatype = c("interval", "slab")) %>% ggplot(aes(x = x, xmin = x - 1, xmax = x + 1, datatype = datatype)) + geom_dotsinterval(na.rm = TRUE) }) }) # discrete distributions (raw) --------------------------------------------- test_that("geom_dots works on discrete distributions", { skip_if_no_vdiffr() vdiffr::expect_doppelganger("one integer bin", data.frame(x = rep(1L, 10)) %>% ggplot(aes(x = x, y = 0)) + stat_dots(orientation = "horizontal") + geom_hline(yintercept = 0.9) ) vdiffr::expect_doppelganger("three integer bins", data.frame(x = c(rep(1L, 10), rep(2L, 12), rep(3L, 5))) %>% ggplot(aes(x = x, y = 0)) + stat_dots(orientation = "horizontal") + geom_hline(yintercept = 0.9) ) vdiffr::expect_doppelganger("one character bin", data.frame(x = rep("a", 10)) %>% ggplot(aes(x = x, y = 0)) + stat_dots(orientation = "horizontal") + geom_hline(yintercept = 0.9) ) vdiffr::expect_doppelganger("three character bins", data.frame(x = c(rep("a", 10), rep("b", 12), rep("c", 5))) %>% ggplot(aes(x = x, y = 0)) + stat_dots(orientation = "horizontal") + geom_hline(yintercept = 0.9) ) }) # discrete dist/rvar -------------------------------------------------- test_that("rvar_factor works", { skip_if_not_installed("posterior", "1.3.1.9000") p = ggplot_build( ggplot() + stat_dotsinterval(aes(xdist = posterior::rvar(c("a","a","a","b","b","c")))) ) slab_ref = data.frame( thickness = rep(1, 6), n = 6, datatype = "slab", .width = NA_real_, stringsAsFactors = FALSE ) slab_ref$x = ggplot2:::mapped_discrete(c(1, 1, 1, 2, 2, 3)) expect_equal(p$data[[1]][p$data[[1]]$datatype == "slab", names(slab_ref)], slab_ref) interval_ref = data.frame( datatype = "interval", .width = c(0.66, 0.95), stringsAsFactors = FALSE ) interval_ref$xmin = ggplot2:::mapped_discrete(c(NA_real_, NA_real_)) interval_ref$xmax = ggplot2:::mapped_discrete(c(NA_real_, NA_real_)) interval_ref$x = ggplot2:::mapped_discrete(c(NA_real_, NA_real_)) attr(interval_ref, "row.names") = c(7L, 8L) expect_equal(p$data[[1]][p$data[[1]]$datatype == "interval", names(interval_ref)], interval_ref) x_scale = p$plot$scales$get_scales("x") expect_true(x_scale$is_discrete()) expect_equal(x_scale$get_limits(), c("a","b","c")) # quantiles works p = ggplot_build( ggplot() + stat_dotsinterval(aes(xdist = posterior::rvar(c("a","a","a","b","b","c"))), quantiles = 12) ) expect_equal(p$data[[1]]$x, ggplot2:::mapped_discrete(c(1,1,1,1,1,1,2,2,2,2,3,3,NA,NA))) }) test_that("rvar_ordered works and integer dist_sample works", { skip_if_not_installed("posterior", "1.3.1.9000") p = ggplot_build( ggplot() + stat_dotsinterval(aes(xdist = posterior::rvar_ordered(c("a","a","a","b","b","c")))) ) slab_ref = data.frame( thickness = 1, n = 6, datatype = "slab", .width = c(.66, .66, .66, .66, .66, NA), stringsAsFactors = FALSE ) slab_ref$x = ggplot2:::mapped_discrete(c(1, 1, 1, 2, 2, 3)) expect_equal(p$data[[1]][p$data[[1]]$datatype == "slab", names(slab_ref)], slab_ref) interval_ref = data.frame( datatype = "interval", .width = c(0.66, 0.95), stringsAsFactors = FALSE ) interval_ref$xmin = ggplot2:::mapped_discrete(c(1, 1)) interval_ref$xmax = ggplot2:::mapped_discrete(c(2.15, 2.875)) interval_ref$x = ggplot2:::mapped_discrete(c(1.5, 1.5)) attr(interval_ref, "row.names") = c(7L, 8L) expect_equal(p$data[[1]][p$data[[1]]$datatype == "interval", names(interval_ref)], interval_ref) x_scale = p$plot$scales$get_scales("x") expect_true(x_scale$is_discrete()) expect_equal(x_scale$get_limits(), c("a","b","c")) # integer dist_sample p = ggplot_build( ggplot() + stat_dotsinterval(aes(xdist = dist_sample(list(c(1L,1L,1L,2L,2L,3L))))) ) slab_ref$x = as.numeric(slab_ref$x) expect_equal(p$data[[1]][p$data[[1]]$datatype == "slab", names(slab_ref)], slab_ref) interval_ref$x = as.numeric(interval_ref$x) interval_ref$xmin = as.numeric(interval_ref$xmin) interval_ref$xmax = as.numeric(interval_ref$xmax) expect_equal(p$data[[1]][p$data[[1]]$datatype == "interval", names(interval_ref)], interval_ref) # quantiles works p = ggplot_build( ggplot() + stat_dotsinterval(aes(xdist = posterior::rvar_ordered(c("a","a","a","b","b","c"))), quantiles = 12) ) expect_equal(p$data[[1]]$x, ggplot2:::mapped_discrete(c(1,1,1,1,1,1,2,2,2,2,3,3, 1.5,1.5))) p = ggplot_build( ggplot() + stat_dotsinterval(aes(xdist = dist_sample(list(c(1L,1L,1L,2L,2L,3L)))), quantiles = 12) ) expect_equal(p$data[[1]]$x, c(1,1,1,1,1,1,2,2,2,2,3,3, 1.5,1.5)) # raw ordered p = ggplot_build( ggplot() + stat_dotsinterval(aes(x = ordered(c("a","a","a","b","b","c")), group = NA), quantiles = 12) ) expect_equal(p$data[[1]]$x, ggplot2:::mapped_discrete(c(1,1,1,1,1,1,2,2,2,2,3,3, 1.5,1.5))) }) test_that("rvar_ordered works with modified scale limits", { skip_if_not_installed("posterior", "1.3.1.9000") p = ggplot_build( ggplot() + stat_dots(aes(xdist = posterior::rvar_ordered(c("a","a","a","c")))) + scale_x_discrete(limits = c("a","b","c")) ) slab_ref = data.frame( thickness = 1, n = 4, datatype = "slab", .width = c(.66,.66,.66, NA), stringsAsFactors = FALSE ) slab_ref$x = ggplot2:::mapped_discrete(c(1, 1, 1, 3)) expect_equal(p$data[[1]][, names(slab_ref)], slab_ref) }) test_that("dist_bernoulli works", { p = ggplot_build( ggplot() + stat_dotsinterval(aes(xdist = dist_bernoulli(0.8)), quantiles = 5) ) slab_ref = data.frame( thickness = 1, n = 5, datatype = "slab", .width = .66, x = c(0, 1, 1, 1, 1), stringsAsFactors = FALSE ) expect_equal(p$data[[1]][p$data[[1]]$datatype == "slab", names(slab_ref)], slab_ref) interval_ref = data.frame( datatype = "interval", .width = c(0.66, 0.95), xmin = c(0, 0), xmax = c(1, 1), x = c(1, 1), stringsAsFactors = FALSE ) attr(interval_ref, "row.names") = c(6L, 7L) expect_equal(p$data[[1]][p$data[[1]]$datatype == "interval", names(interval_ref)], interval_ref) x_scale = p$plot$scales$get_scales("x") expect_true(!x_scale$is_discrete()) expect_equal(x_scale$get_limits(), c(0, 1)) }) test_that("dist_categorical works", { p = ggplot_build( ggplot() + stat_dotsinterval(aes(xdist = dist_categorical(list(3:1/6), list(c("a","b","c")))), quantiles = 6) ) slab_ref = data.frame( thickness = rep(1, 6), n = 6, datatype = "slab", .width = NA_real_, stringsAsFactors = FALSE ) slab_ref$x = ggplot2:::mapped_discrete(c(1, 1, 1, 2, 2, 3)) expect_equal(p$data[[1]][p$data[[1]]$datatype == "slab", names(slab_ref)], slab_ref) interval_ref = data.frame( datatype = "interval", .width = c(0.66, 0.95), stringsAsFactors = FALSE ) interval_ref$xmin = ggplot2:::mapped_discrete(c(NA_real_, NA_real_)) interval_ref$xmax = ggplot2:::mapped_discrete(c(NA_real_, NA_real_)) interval_ref$x = ggplot2:::mapped_discrete(c(NA_real_, NA_real_)) attr(interval_ref, "row.names") = c(7L, 8L) expect_equal(p$data[[1]][p$data[[1]]$datatype == "interval", names(interval_ref)], interval_ref) x_scale = p$plot$scales$get_scales("x") expect_true(x_scale$is_discrete()) expect_equal(x_scale$get_limits(), c("a","b","c")) # with integer categorical distribution p = ggplot_build( ggplot() + stat_dotsinterval(aes(xdist = dist_categorical(list(3:1/6))), quantiles = 6) ) expect_equal(p$data[[1]][p$data[[1]]$datatype == "slab", names(slab_ref)], slab_ref) expect_equal(p$data[[1]][p$data[[1]]$datatype == "interval", names(interval_ref)], interval_ref) }) test_that("dist_categorical works with modified scale limits", { p = ggplot_build( ggplot() + stat_dots(aes(xdist = dist_categorical(list(c(3,1)/4), list(c("a","c")))), quantiles = 4) + scale_x_discrete(limits = c("a","b","c")) ) slab_ref = data.frame( thickness = rep(1, 4), n = 4, datatype = "slab", .width = NA_real_, stringsAsFactors = FALSE ) slab_ref$x = ggplot2:::mapped_discrete(c(1,1,1, 3)) expect_equal(p$data[[1]][, names(slab_ref)], slab_ref) }) test_that("dist_categorical works with explicit integer levels", { p = ggplot_build( ggplot() + stat_dots(aes(xdist = dist_categorical(list(c(3,1)/4), list(c(1L,3L)))), quantiles = 4) ) slab_ref = data.frame( thickness = rep(1, 4), n = 4, datatype = "slab", .width = NA_real_, stringsAsFactors = FALSE ) slab_ref$x = ggplot2:::mapped_discrete(c(1,1,1, 2)) expect_equal(p$data[[1]][, names(slab_ref)], slab_ref) }) # dot stroke -------------------------------------------------------------- test_that("geom_dots correctly adjusts dot size for stroke size", { skip_if_no_vdiffr() p = data.frame(x = ppoints(40)) %>% ggplot(aes(x = x)) vdiffr::expect_doppelganger("size = 1 and 3", p + geom_dots(aes(y = "a"), binwidth = 1/20, size = 1, color = "black") + geom_dots(aes(y = "b"), binwidth = 1/20, size = 3, color = "black") ) }) # side, justification, scale aes ------------------------------------------ test_that("side, justification, and scale can vary", { skip_if_no_vdiffr() vdiffr::expect_doppelganger("varying side", mtcars %>% ggplot(aes(x = mpg, y = cyl, side = case_when(cyl == 4 ~ "top", cyl == 6 ~ "both", cyl == 8 ~ "bottom"), )) + stat_dotsinterval(orientation = "horizontal") ) vdiffr::expect_doppelganger("varying side and just", mtcars %>% ggplot(aes(x = mpg, y = cyl, side = case_when(cyl == 4 ~ "top", cyl == 6 ~ "both", cyl == 8 ~ "bottom"), justification = case_when(cyl == 4 ~ 1, cyl == 6 ~ 0.25, cyl == 8 ~ 0) )) + stat_dotsinterval(orientation = "horizontal", scale = 0.5) ) vdiffr::expect_doppelganger("varying scale, side, just", tibble( x = c(0, rep(1, 9), 0), group = c(rep("a", 4), rep("b", 7)), scale = c(rep(1/3, 4), rep(2/3, 7)), side = c(rep("top", 4), rep("bottom", 7)), justification = c(rep(0, 4), rep(1, 7)) ) %>% ggplot(aes(x = x, y = group, scale = scale, side = side, justification = justification, color = group)) + stat_dots() ) })