# Tests for distribution functions # # Author: mjskay ############################################################################### suppressWarnings(suppressPackageStartupMessages({ library(distributional) })) # wrapped distributions ---------------------------------------------------- test_that("distribution functions work on wrapped distributions", { expect_equal(distr_pdf(dist_wrap("norm", 1, 2))(-2:2), dnorm(-2:2, 1, 2)) expect_equal(distr_cdf(dist_wrap("norm", 1, 2))(-2:2), pnorm(-2:2, 1, 2)) expect_equal(distr_quantile(dist_wrap("norm", 1, 2))(ppoints(5)), qnorm(ppoints(5), 1, 2)) expect_equal( distr_point_interval(dist_wrap("norm", 1, 2), median_qi, trans = scales::identity_trans()), tibble( .value = 1, .lower = qnorm(0.025, 1, 2), .upper = qnorm(0.975, 1, 2), .width = 0.95, .point = "median", .interval = "qi" ) ) }) # distributional objects -------------------------------------------------- test_that("distribution functions work on distributional objects", { x = dist_normal(1,2) expect_equal(distr_pdf(x)(-2:2), dnorm(-2:2, 1, 2)) expect_equal(distr_cdf(x)(-2:2), pnorm(-2:2, 1, 2)) expect_equal(distr_quantile(x)(ppoints(5)), qnorm(ppoints(5), 1, 2)) # with subsetting expect_equal(distr_pdf(x[[1]])(-2:2), dnorm(-2:2, 1, 2)) expect_equal(distr_cdf(x[[1]])(-2:2), pnorm(-2:2, 1, 2)) expect_equal(distr_quantile(x[[1]])(ppoints(5)), qnorm(ppoints(5), 1, 2)) }) # sample distributions ---------------------------------------------------- test_that("sample distributions can be detected and samples extracted", { x = dist_sample(list(1:10)) expect_equal(distr_is_sample(x), TRUE) expect_equal(distr_get_sample(x), 1:10) x = vctrs::field(dist_sample(list(1:10)), 1) expect_equal(distr_is_sample(x), TRUE) expect_equal(distr_get_sample(x), 1:10) # RVAR skip_if_not_installed("posterior") x = posterior::rvar(1:10L) expect_equal(distr_is_sample(x), TRUE) expect_equal(as.vector(distr_get_sample(x)), 1:10) expect_equal(distr_is_discrete(x), TRUE) x = posterior::rvar(1:10/2) expect_equal(distr_is_discrete(x), FALSE) }) # constant distributions -------------------------------------------------- test_that("constant distributions are detected correctly", { expect_equal(distr_is_constant(dist_normal(0,1)), FALSE) expect_equal(distr_is_constant(dist_normal(0,.Machine$double.eps)), FALSE) expect_equal(distr_is_constant(dist_normal(0,0)), TRUE) expect_equal(distr_is_constant(dist_wrap("lnorm",1,0)), TRUE) expect_equal(distr_is_constant(dist_sample(list(1))), TRUE) expect_equal(distr_is_constant(dist_sample(list(c(2,2,2)))), TRUE) expect_equal(distr_is_constant(dist_sample(list(c(1,2,3)))), FALSE) expect_false(distr_is_constant(dist_mixture(dist_degenerate(1L), dist_degenerate(2L), weights = c(0.3, 0.7)))) expect_true(distr_is_constant(dist_mixture(dist_degenerate(1L), dist_degenerate(1L), weights = c(0.3, 0.7)))) skip_if_not_installed("posterior") expect_equal(distr_is_constant(posterior::rvar(1)), TRUE) expect_equal(distr_is_constant(posterior::rvar(c(3,3,3))), TRUE) expect_equal(distr_is_constant(posterior::rvar(c(1,2,3))), FALSE) }) # factor rvars ---------------------------------------------------- test_that("distribution functions work on factor rvars", { skip_if_not_installed("posterior") x_values = c("a","a","b","b","b","c","c","c","c") x_ordered = posterior::rvar_ordered(x_values) expect_equal(distr_cdf(x_ordered)(1:3), c(2,5,9)/9) expect_equal(distr_pdf(x_ordered)(1:3), c(2,3,4)/9) expect_equal(distr_quantile(x_ordered)(c(2,5,9)/9), c("a","b","c")) x_factor = posterior::rvar_factor(x_values) expect_equal(distr_cdf(x_factor)(1:3), c(NA_real_,NA_real_,NA_real_)) expect_equal(distr_pdf(x_factor)(1:3), c(2,3,4)/9) expect_equal(distr_quantile(x_factor)(c(2,5,9)/9), c(NA_real_,NA_real_,NA_real_)) expect_equal( distr_point_interval(x_ordered, median_qi, trans = scales::identity_trans()), data.frame( .value = 2, .lower = 1, .upper = 3, .width = 0.95, .point = "median", .interval = "qi", stringsAsFactors = FALSE ) ) })