# Tests for density estimators # # Author: mjskay ############################################################################### # drop the portion of a density() object that depends on the input function # call expression (to make comparison across functions easier) drop_call = function(x) { x[!names(x) %in% c("call", "data.name")] } test_that("density_bounded works", { x = 1:1000 expect_equal(density_bounded(adjust = 0.5)(x), density_bounded(x, adjust = 0.5)) expect_equal(drop_call(density_bounded(1:3)), drop_call(density_bounded(c(1:3, NA), na.rm = TRUE))) # density for Uniform(1, 1000) is 1/999, estimator should be close-ish to that expect_true(all(abs(density_bounded(x)$y - 1/999) < .0001)) # default bounder is a bit looser, these tighter ones should be even closer to correct: expect_true(all(abs(density_bounded(x, bounder = bounder_cdf(p = 0.5))$y - 1/999) < .00001)) expect_true(all(abs(density_bounded(x, bounder = "cooke")$y - 1/999) < .00001)) expect_true(all(abs(density_bounded(x, bounder = "range")$y - 1/999) < .00001)) expect_true(all(abs(density_bounded(x, bounds = c(1,1000))$y - 1/999) < .00001)) expect_error(density_bounded(1:2, n = 0), "`n` of at least 1") expect_error(density_bounded(1:4, bounds = c(1,2)), "`x` must be inside `bounds`") expect_error(density_bounded(c(1, 2, NA)), "must not contain missing \\(NA\\) values") }) test_that("density_unbounded works", { x = 1:10 expect_equal(density_unbounded(adjust = 0.5)(x), density_unbounded(x, adjust = 0.5)) expect_equal(drop_call(density_unbounded(1:3)), drop_call(density_unbounded(c(1:3, NA), na.rm = TRUE))) ref = density(x, bw = bw.SJ(x, method = "dpi")) ref$cdf = ecdf(x)(ref$x) expect_equal(drop_call(density_unbounded(x)), drop_call(ref)) expect_error(density_unbounded(1:2, n = 0), "`n` of at least 1") expect_error(density_unbounded(c(1, 2, NA)), "must not contain missing \\(NA\\) values") }) test_that("density_bounded(range_only = TRUE) works", { expect_equal( density_bounded(range_only = TRUE, trim = TRUE, bounder = bounder_cooke())(1:2), list(x = 1:2, y = c(NA_real_, NA_real_)) ) expect_equal( density_bounded(range_only = TRUE, trim = FALSE, bounder = bounder_cooke())(1:2), list(x = c(0.75, 2.25), y = c(NA_real_, NA_real_)) ) }) # bandwidth --------------------------------------------------------------- test_that("bandwidth estimators work", { x = 1:1000 expect_equal(bandwidth_nrd0()(x), bw.nrd0(x)) expect_equal(bandwidth_nrd()(x), bw.nrd(x)) expect_equal(bandwidth_ucv()(x), bw.ucv(x)) expect_equal(bandwidth_bcv()(x), bw.bcv(x)) expect_equal(bandwidth_SJ()(x), bw.SJ(x)) expect_equal(bandwidth_dpi()(x), bw.SJ(x, method = "dpi")) }) test_that("bandwidth fallback works", { x = c(rep(1, 10), 1.1) expect_warning(expect_equal(bandwidth_nrd(x), bw.nrd0(x)), class = "ggdist_warn_bandwidth_fallback") expect_warning(expect_equal(bandwidth_SJ(x), bw.nrd0(x)), class = "ggdist_warn_bandwidth_fallback") expect_warning(expect_equal(bandwidth_dpi(x), bw.nrd0(x)), class = "ggdist_warn_bandwidth_fallback") }) # adaptive density estimator ---------------------------------------------- test_that("adaptive density estimator works", { skip_if_no_vdiffr() skip_if_sensitive_to_density() x = qlnorm(ppoints(1000), 1/2, 1) # red (adaptive) KDE should do better near the mode vdiffr::expect_doppelganger("adaptive KDE (red) better matches mode", ggplot() + stat_slab(aes(xdist = distributional::dist_lognormal(1/2, 1)), fill = NA, color = "gray50") + stat_slab(aes(x), density = density_bounded(adapt = 1, bandwidth = "dpi", bounds = c(0, Inf)), fill = NA, color = "blue", linetype = "11") + stat_slab(aes(x), density = density_bounded(adapt = 100, bandwidth = "dpi", bounds = c(0, Inf)), fill = NA, color = "red", linetype = "11") + scale_thickness_shared() + coord_cartesian(xlim = c(0, 10)) ) x = qlnorm(ppoints(100), 1/2, 1) vdiffr::expect_doppelganger("adapt = n better matches mode", ggplot() + stat_slab(aes(xdist = distributional::dist_lognormal(1/2, 1)), fill = NA, color = "gray50") + stat_slab(aes(x), density = density_bounded(adapt = 1, bandwidth = "dpi", bounds = c(0, Inf)), fill = NA, color = "blue", linetype = "11") + stat_slab(aes(x), density = density_bounded(adapt = 100, bandwidth = "dpi", bounds = c(0, Inf)), fill = NA, color = "red", linetype = "11") + scale_thickness_shared() + coord_cartesian(xlim = c(0, 10)) ) })