library(vdiffr) library(ggplot2) library(distributional) df <- data.frame(y = rt(200, df = 5)) uncertain_df <- data.frame(y=dist_normal(rt(200, df = 5), runif(200))) params <- list(m = -0.02505057194115, s = 1.122568610124, df = 6.63842653897) q <- ggplot(uncertain_df, aes(sample = y)) test_that("geom_qq_sample tests", { set.seed(980) p1 <- q + stat_qq_sample() expect_doppelganger("Generated norm", p1) p3 <- q + stat_qq_sample(distribution = qt, dparams = params["df"]) expect_doppelganger("Set parameters", p3) p4 <- ggplot(uncertain_mtcars, aes(sample = mpg)) + stat_qq_sample() expect_doppelganger("With mtcars data", p4) } )