library(vdiffr) library(ggplot2) library(distributional) library(dplyr) ids <- factor(c("1.1", "2.1", "1.2", "2.2", "1.3", "2.3")) values <- data.frame( id = ids, value = c(3, 3.1, 3.1, 3.2, 3.15, 3.5) ) positions <- data.frame( id = rep(ids, each = 4), x = c(2, 1, 1.1, 2.2, 1, 0, 0.3, 1.1, 2.2, 1.1, 1.2, 2.5, 1.1, 0.3, 0.5, 1.2, 2.5, 1.2, 1.3, 2.7, 1.2, 0.5, 0.6, 1.3), y = c(-0.5, 0, 1, 0.5, 0, 0.5, 1.5, 1, 0.5, 1, 2.1, 1.7, 1, 1.5, 2.2, 2.1, 1.7, 2.1, 3.2, 2.8, 2.1, 2.2, 3.3, 3.2) ) #' Currently we need to manually merge the two together datapoly <- merge(values, positions, by = c("id")) # Make uncertain version of datapoly uncertain_datapoly <- datapoly |> mutate(value = dist_uniform(value-0.1, value + 0.1)) test_that("position_subdivide tests", { set.seed(444) p1 <- ggplot(uncertain_datapoly , aes(x = x, y = y)) + geom_polygon_sample(aes(fill = value, group = id), alpha=0.1, position = "subdivide") expect_doppelganger("Polygon e.g.", p1) } ) # ggplot(uncertain_datapoly , aes(x = x, y = y)) + # geom_polygon_sample(aes(fill = value, group = id), times=40, # position = "subdivide")