testthat::skip_if(getRversion() <= package_version("4.1.0")) testthat::skip_on_os(c("mac", "linux")) ## ----setup------------------------------------------------------------------------------------------ library(ggplot2) library(dplyr) library(stringr) library(tidyr) library(palmerpenguins) library(patchwork) set_blanket() ## --------------------------------------------------------------------------------------------------- test_name <- "1" test_that(test_name, { p1 <- diamonds |> count(color) |> gg_col( x = n, y = color, width = 0.75, x_labels = \(x) x / 1000, x_title = "Count (thousands)", subtitle = "\nDefault order" ) p2 <- diamonds |> count(color) |> mutate(across(color, \(x) x |> forcats::fct_reorder(n) |> forcats::fct_rev())) |> gg_col( x = n, y = color, width = 0.75, x_labels = \(x) x / 1000, x_title = "Count (thousands)", subtitle = "\nRe-orderered" ) p <- p1 + p2 vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- test_name <- "2" test_that(test_name, { p1 <- diamonds |> count(color) |> filter(color %in% c("E", "G", "I")) |> gg_col( x = n, y = color, width = 0.75, x_labels = \(x) x / 1000, x_title = "Count (thousands)", subtitle = "\nUnused levels kept", ) p2 <- diamonds |> count(color) |> filter(color %in% c("E", "G", "I")) |> mutate(color = forcats::fct_drop(color)) |> gg_col( x = n, y = color, width = 0.75, x_labels = \(x) x / 1000, x_title = "Count (thousands)", subtitle = "\nUnused levels dropped", ) p <- p1 + p2 vdiffr::expect_doppelganger(test_name, p) }) ## ----fig.asp=0.4------------------------------------------------------------------------------------ test_name <- "3" test_that(test_name, { p <- sf::st_read(system.file("shape/nc.shp", package = "sf"), quiet = TRUE) |> gg_sf(col = AREA) vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- test_name <- "4" test_that(test_name, { p <- penguins |> gg_pointrange( stat = "summary", x = species, y = flipper_length_mm, size = 0.1, ) vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- test_name <- "5" test_that(test_name, { p <- penguins |> mutate(across(sex, \(x) str_to_sentence(x))) |> gg_boxplot( x = species, y = flipper_length_mm, col = sex, colour = "black", #or fill = #D3D3D3", position = position_dodge2(preserve = "single"), alpha = 0.9, ) vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- test_name <- "6" test_that(test_name, { p <- penguins |> gg_boxplot( x = species, y = flipper_length_mm, colour = "black", #or fill = #D3D3D3", width = 0.5, alpha = 0.9, ) vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- test_name <- "7" test_that(test_name, { p <- penguins |> count(species, sex) |> gg_col( x = sex, y = n, col = species, position = position_dodge2(preserve = "single"), width = 0.75, x_labels = \(x) str_to_sentence(x), ) + geom_text( mapping = aes(label = n, !!!aes_contrast()), position = position_dodge2(width = 0.75, preserve = "single"), vjust = 1.33, show.legend = FALSE, ) vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- test_name <- "8" test_that(test_name, { p <- penguins |> count(species, sex) |> gg_col( x = n, y = sex, col = species, position = position_dodge2(preserve = "single"), width = 0.75, y_labels = \(x) str_to_sentence(x), ) + geom_text( mapping = aes(label = n, !!!aes_contrast()), position = position_dodge2(width = 0.75, preserve = "single"), hjust = 1.33, show.legend = FALSE, ) vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- test_name <- "9" test_that(test_name, { p <- penguins |> mutate(across(sex, \(x) str_to_sentence(x))) |> gg_histogram( x = flipper_length_mm, facet = species, facet2 = sex, y_breaks = scales::breaks_pretty(7), y_labels = \(x) replace_seq(x), ) vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- test_name <- "10" test_that(test_name, { p <- data.frame( age = c(0:9, 0:9), sex = c(rep("Male", 10), rep("Female", 10)), population = c(200, 250, 300, 350, 440, 450, 500, 550, 600, 650, 190, 240, 290, 330, 420, 430, 480, 530, 580, 630)) |> mutate(population = ifelse(sex == "Female", -population, population)) %>% gg_col( y = age, x = population, col = sex, width = 1, orientation = "y", x_labels = \(x) abs(x), x_include = max(abs(.$population)) * c(-1, 1), y_limits = c(NA, NA), ) + geom_vline( xintercept = 0, colour = "#121b24", linewidth = 10 / 33 ) vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- test_name <- "11" test_that(test_name, { p <- data.frame( age = c(0:9, 0:9), sex = c(rep("Male", 10), rep("Female", 10)), population = c(200, 250, 300, 350, 440, 450, 500, 550, 600, 650, 190, 240, 290, 330, 420, 430, 480, 530, 580, 630)) |> mutate(population = ifelse(sex == "Female", -population, population)) %>% gg_col( y = age, x = population, col = sex, width = 1, orientation = "y", x_labels = \(x) abs(x), x_include = max(abs(.$population)) * c(-1, 1), y_limits = c(NA, NA), ) + geom_vline( xintercept = 0, colour = "#121b24", linewidth = 10 / 33 ) + light_mode_r() # ggeasy::easy_remove_y_gridlines() + # ggeasy::easy_remove_y_axis() vdiffr::expect_doppelganger(test_name, p) }) ## ----fig.asp=0.55----------------------------------------------------------------------------------- test_name <- "12" test_that(test_name, { p <- penguins |> gg_histogram( x = flipper_length_mm, mapping = aes(y = after_stat(density)), facet = species, ) vdiffr::expect_doppelganger(test_name, p) }) ## ----fig.asp=0.55----------------------------------------------------------------------------------- test_name <- "13" test_that(test_name, { p <- faithfuld |> gg_contour( x = waiting, y = eruptions, z = density, mapping = aes(colour = after_stat(level)), bins = 8, ) vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- test_name <- "14" test_that(test_name, { p1 <- economics |> gg_smooth( x = date, y = unemploy, subtitle = "\nNo x_limits set", se = TRUE) + geom_vline(xintercept = c(lubridate::ymd("1985-01-01", "1995-01-01"))) + geom_point(alpha = 0.3) p2 <- economics |> filter(between(date, lubridate::ymd("1985-01-01"), lubridate::ymd("1995-01-01"))) |> gg_smooth( x = date, y = unemploy, se = TRUE, x_labels = \(x) stringr::str_sub(x, 3, 4), subtitle = "\nx data filtered") + geom_point(alpha = 0.3) p <- p1 + p2 vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- test_name <- "15" test_that(test_name, { p <- economics |> gg_smooth( x = date, y = unemploy, se = TRUE, x_limits = c(lubridate::ymd("1985-01-01", "1995-01-01")), x_labels = \(x) stringr::str_sub(x, 3, 4), subtitle = "\nx_limits set", ) + geom_point(alpha = 0.3) vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- test_name <- "16" test_that(test_name, { p4 <- economics |> gg_smooth( x = date, y = unemploy, se = TRUE, x_limits = c(lubridate::ymd("1985-01-01", "1995-01-01")), x_labels = \(x) stringr::str_sub(x, 3, 4), coord = coord_cartesian(clip = "on"), subtitle = "\nx_limits set & cartesian space clipped") + geom_point(alpha = 0.3) p5 <- economics |> gg_smooth( x = date, y = unemploy, se = TRUE, x_limits = c(lubridate::ymd("1985-01-01", "1995-01-01")), x_labels = \(x) stringr::str_sub(x, 3, 4), x_oob = scales::oob_censor, subtitle = "\nx_limits set & x_oob censored") + geom_point(alpha = 0.3) p <- p4 + p5 vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- test_name <- "17" test_that(test_name, { p <- mpg |> mutate(centred = cty - mean(cty)) |> select(displ, hwy, centred) %>% gg_point( x = displ, y = hwy, col = centred, col_palette = c(teal, "#E8EFF2", orange), col_breaks = scales::breaks_width(5), col_rescale = scales::rescale(c(min(.$centred), 0, max(.$centred))) ) vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- test_name <- "18" test_that(test_name, { p <- mpg |> mutate(centred = cty - mean(cty)) |> select(displ, hwy, centred) %>% gg_point( x = displ, y = hwy, col = centred, col_palette = c(teal, "#E8EFF2", orange), col_limits = max(abs(.$centred)) * c(-1, 1), col_breaks = scales::breaks_width(5) ) vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- test_name <- "19" test_that(test_name, { p1 <- pressure |> gg_point( x = temperature, y = pressure, x_labels = replace_seq, y_labels = replace_seq, subtitle = "\nDefault", ) p2 <- pressure |> gg_point( x = temperature, y = pressure, x_labels = replace_seq, y_transform = "reverse", y_labels = replace_seq, subtitle = "\nReverse", ) p3 <- pressure |> gg_point( x = temperature, y = pressure, x_labels = replace_seq, y_transform = "log10", subtitle = "\nLog10", ) p4 <- pressure |> gg_point( x = temperature, y = pressure, x_labels = replace_seq, y_transform = c("log10", "reverse"), subtitle = "\nLog10 & Reverse", ) p <- (p1 + p2) / (p3 + p4) vdiffr::expect_doppelganger(test_name, p) }) set_blanket()