testthat::skip_if(getRversion() <= package_version("4.1.0")) testthat::skip_on_os(c("mac", "linux")) library(ggplot2) library(dplyr) set_blanket() ## --------------------------------------------------------------------------------------------------- test_name <- "gg_area" test_that(test_name, { p <- economics |> gg_area( x = date, y = unemploy, y_label = "Unemployment", ) vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- test_name <- "gg_bar" test_that(test_name, { p <- palmerpenguins::penguins |> dplyr::mutate(dplyr::across(sex, \(x) stringr::str_to_sentence(x))) |> gg_bar( y = species, col = sex, position = position_dodge(preserve = "single"), width = 0.75, ) vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- test_name <- "gg_bin_2d" test_that(test_name, { p <- ggplot2::diamonds |> gg_bin_2d( x = carat, y = price, ) vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- test_name <- "gg_boxplot" test_that(test_name, { p <- palmerpenguins::penguins |> tidyr::drop_na(sex) |> dplyr::mutate(dplyr::across(sex, \(x) stringr::str_to_sentence(x))) |> gg_boxplot( x = flipper_length_mm, y = sex, col = species, mode = light_mode_b(), ) vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- test_name <- "gg_col" test_that(test_name, { p <- palmerpenguins::penguins |> tidyr::drop_na(sex) |> dplyr::mutate(dplyr::across(sex, \(x) stringr::str_to_sentence(x))) |> group_by(sex, species) |> summarise(dplyr::across(flipper_length_mm, \(x) mean(x, na.rm = TRUE))) |> gg_col( x = flipper_length_mm, y = species, col = sex, position = position_dodge(preserve = "single"), width = 0.75, ) vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- test_name <- "gg_contour" test_that(test_name, { p <- ggplot2::faithfuld |> gg_contour( x = waiting, y = eruptions, z = density, ) vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- test_name <- "gg_contour_filled" test_that(test_name, { p <- ggplot2::faithfuld |> gg_contour_filled( x = waiting, y = eruptions, z = density, bins = 8, ) vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- test_name <- "gg_crossbar" test_that(test_name, { p <- data.frame( trt = factor(c(1, 1, 2, 2)), resp = c(1, 5, 3, 4), group = factor(c(1, 2, 1, 2)), upper = c(1.1, 5.3, 3.3, 4.2), lower = c(0.8, 4.6, 2.4, 3.6)) |> gg_crossbar( x = trt, y = resp, ymin = lower, ymax = upper, col = group, width = 0.5, x_label = "Treatment", y_label = "Response", ) vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- test_name <- "gg_density" test_that(test_name, { p <- palmerpenguins::penguins |> dplyr::mutate(dplyr::across(sex, \(x) stringr::str_to_sentence(x))) |> tidyr::drop_na(sex) |> gg_density( x = flipper_length_mm, col = species, mode = light_mode_t(), ) vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- test_name <- "gg_density_2d" test_that(test_name, { set.seed(123) p <- faithful |> gg_density_2d( x = waiting, y = eruptions, bins = 8, contour = TRUE, ) vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- test_name <- "gg_density_2d_filled" test_that(test_name, { set.seed(123) p <- faithful |> gg_density_2d_filled( x = waiting, y = eruptions, bins = 8, contour = TRUE, ) vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- test_name <- "gg_errorbar" test_that(test_name, { p <- data.frame( trt = factor(c(1, 1, 2, 2)), resp = c(1, 5, 3, 4), group = factor(c(1, 2, 1, 2)), upper = c(1.1, 5.3, 3.3, 4.2), lower = c(0.8, 4.6, 2.4, 3.6) ) |> gg_errorbar( x = trt, ymin = lower, ymax = upper, col = group, width = 0.1, x_label = "Treatment", y_label = "Response", ) vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- test_name <- "gg_freqpoly" test_that(test_name, { p <- palmerpenguins::penguins |> dplyr::mutate(dplyr::across(sex, \(x) stringr::str_to_sentence(x))) |> gg_freqpoly( x = flipper_length_mm, col = sex, mode = light_mode_t(), ) + theme(legend.title = element_blank()) vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- test_name <- "gg_function" test_that(test_name, { p <- gg_function( fun = \(x) dnorm(x, mean = 0, sd = 5), x_expand_limits = qnorm(p = c(0.005, 0.995), mean = 0, sd = 5), y_expand_limits = 0, ) vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- test_name <- "gg_hex" test_that(test_name, { p <- ggplot2::diamonds |> gg_hex( x = carat, y = price, coord = coord_cartesian(clip = "on"), ) vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- test_name <- "gg_histogram" test_that(test_name, { p <- palmerpenguins::penguins |> dplyr::mutate(dplyr::across(sex, \(x) stringr::str_to_sentence(x))) |> gg_histogram( x = flipper_length_mm, col = sex, facet = species, bins = 50, mode = light_mode_b(), ) vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- # test_name <- "gg_jitter" # # test_that(test_name, { # set.seed(123) # # p <- palmerpenguins::penguins |> # gg_jitter( # x = species, # y = body_mass_g, # col = flipper_length_mm, # position = position_jitter(height = 0), # y_expand_limits = 0, # col_steps = TRUE, # ) # # vdiffr::expect_doppelganger(test_name, p) # }) ## --------------------------------------------------------------------------------------------------- test_name <- "gg_label" test_that(test_name, { p <- bind_rows( mtcars |> slice_min(order_by = mpg), mtcars |> slice_max(order_by = mpg)) |> tibble::rownames_to_column("model") |> gg_label( x = model, y = mpg, col = mpg, label = model, size = 3.53, y_expand_limits = 0, y_label = "Miles per gallon", col_palette = c(orange, "white", teal), ) vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- test_name <- "gg_line" test_that(test_name, { p <- economics |> gg_line( x = date, y = unemploy, y_expand_limits = 0, y_label = "Unemployment", ) vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- test_name <- "gg_linerange" test_that(test_name, { p <- data.frame( trt = factor(c(1, 1, 2, 2)), resp = c(1, 5, 3, 4), group = factor(c(1, 2, 1, 2)), upper = c(1.1, 5.3, 3.3, 4.2), lower = c(0.8, 4.6, 2.4, 3.6)) |> gg_linerange( x = trt, ymin = lower, ymax = upper, col = group, position = position_dodge(width = 0.2), x_label = "Treatment", y_label = "Response", ) vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- test_name <- "gg_path" test_that(test_name, { p <- economics |> dplyr::mutate(unemploy_rate = unemploy / pop) |> gg_path( x = unemploy_rate, y = psavert, x_label = "Unemployment rate", y_expand_limits = 0, y_label = "Personal savings rate", ) vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- test_name <- "gg_point" test_that(test_name, { p <- palmerpenguins::penguins |> gg_point( x = flipper_length_mm, y = body_mass_g, col = species, ) vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- test_name <- "gg_pointrange" test_that(test_name, { p <- data.frame( trt = factor(c(1, 1, 2, 2)), resp = c(1, 5, 3, 4), group = factor(c(1, 2, 1, 2)), upper = c(1.1, 5.3, 3.3, 4.2), lower = c(0.8, 4.6, 2.4, 3.6)) |> gg_pointrange( x = trt, y = resp, col = group, ymin = lower, ymax = upper, position = position_dodge(width = 0.2), size = 0.2, x_label = "Treatment", y_label = "Response", ) vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- test_name <- "gg_polygon" test_that(test_name, { ids <- factor(c("1.1", "2.1", "1.2", "2.2", "1.3", "2.3")) values <- data.frame( id = ids, value = c(3, 3.1, 3.1, 3.2, 3.15, 3.5) ) positions <- data.frame( id = rep(ids, each = 4), x = c(2, 1, 1.1, 2.2, 1, 0, 0.3, 1.1, 2.2, 1.1, 1.2, 2.5, 1.1, 0.3, 0.5, 1.2, 2.5, 1.2, 1.3, 2.7, 1.2, 0.5, 0.6, 1.3), y = c(-0.5, 0, 1, 0.5, 0, 0.5, 1.5, 1, 0.5, 1, 2.1, 1.7, 1, 1.5, 2.2, 2.1, 1.7, 2.1, 3.2, 2.8, 2.1, 2.2, 3.3, 3.2) ) datapoly <- merge(values, positions, by = c("id")) p <- datapoly |> gg_polygon( x = x, y = y, col = value, group = id, ) vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- test_name <- "gg_qq" test_that(test_name, { p <- palmerpenguins::penguins |> gg_qq( sample = body_mass_g, facet = species, coord = coord_cartesian(clip = "on"), ) + geom_qq_line( colour = blue, ) vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- test_name <- "gg_quantile" test_that(test_name, { p <- palmerpenguins::penguins |> gg_quantile( x = flipper_length_mm, y = body_mass_g, ) vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- test_name <- "gg_raster" test_that(test_name, { p <- ggplot2::faithfuld |> gg_raster( x = waiting, y = eruptions, col = density, ) vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- test_name <- "gg_rect" test_that(test_name, { p <- data.frame( x = rep(c(2, 5, 7, 9, 12), 2), y = rep(c(1, 2), each = 5), z = factor(c(rep(1:4, each = 2), 5, NA)), w = rep(diff(c(0, 4, 6, 8, 10, 14)), 2)) |> dplyr::mutate( xmin = x - w / 2, xmax = x + w / 2, ymin = y, ymax = y + 1 ) |> gg_rect( xmin = xmin, xmax = xmax, ymin = ymin, ymax = ymax, col = z, ) vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- test_name <- "gg_ribbon" test_that(test_name, { p <- data.frame(year = 1875:1972, level = as.vector(LakeHuron)) |> mutate(level_min = level - 1, level_max = level + 1) |> gg_ribbon( x = year, ymin = level_min, ymax = level_max, colour = NA, x_labels = \(x) x, y_label = "Level", ) + geom_line( mapping = aes(y = level), ) vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- # test_name <- "gg_rug" # # test_that(test_name, { # p <- palmerpenguins::penguins |> # dplyr::mutate(dplyr::across(sex, \(x) stringr::str_to_sentence(x))) |> # gg_rug( # x = flipper_length_mm, # y = body_mass_g, # col = sex, # ) # # vdiffr::expect_doppelganger(test_name, p) # }) ## --------------------------------------------------------------------------------------------------- test_name <- "gg_segment" test_that(test_name, { p <- data.frame(x1 = 2.62, x2 = 3.57, y1 = 21.0, y2 = 15.0) |> gg_segment( x = x1, xend = x2, y = y1, yend = y2, ) vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- # test_name <- "gg_sf" # # test_that(test_name, { # p <- sf::st_read(system.file("shape/nc.shp", package = "sf")) |> # gg_sf( # col = AREA, # ) # # vdiffr::expect_doppelganger(test_name, p) # }) ## --------------------------------------------------------------------------------------------------- test_name <- "gg_smooth" test_that(test_name, { p <- palmerpenguins::penguins |> dplyr::mutate(dplyr::across(sex, \(x) stringr::str_to_sentence(x))) |> tidyr::drop_na(sex) |> gg_smooth( x = flipper_length_mm, y = body_mass_g, col = sex, se = TRUE, ) vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- test_name <- "gg_step" test_that(test_name, { p <- economics |> filter(date > lubridate::ymd("2010-01-01")) |> gg_step( x = date, y = unemploy, y_expand_limits = 0, y_label = "Unemployment", ) vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- test_name <- "gg_text" test_that(test_name, { p <- bind_rows( mtcars |> slice_min(order_by = mpg), mtcars |> slice_max(order_by = mpg)) |> tibble::rownames_to_column("model") |> gg_text( x = model, y = mpg, col = mpg, label = model, size = 3.53, y_expand_limits = 0, y_label = "Miles per gallon", col_palette = c(orange, "white", teal), ) vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- test_name <- "gg_tile" test_that(test_name, { p <- palmerpenguins::penguins |> dplyr::mutate(dplyr::across(sex, \(x) stringr::str_to_sentence(x))) |> group_by(species, sex) |> summarise(flipper_length_mm = mean(flipper_length_mm, na.rm = TRUE)) |> gg_tile( x = sex, y = species, col = flipper_length_mm, ) vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- test_name <- "gg_violin" test_that(test_name, { p <- palmerpenguins::penguins |> tidyr::drop_na(sex) |> dplyr::mutate(dplyr::across(sex, \(x) stringr::str_to_sentence(x))) |> gg_violin( x = sex, y = body_mass_g, col = species, ) vdiffr::expect_doppelganger(test_name, p) }) ## --------------------------------------------------------------------------------------------------- test_name <- "gg_blanket" test_that(test_name, { p <- palmerpenguins::penguins |> tidyr::drop_na(sex) |> dplyr::mutate(dplyr::across(sex, \(x) stringr::str_to_sentence(x))) |> gg_blanket( geom = "violin", stat = "ydensity", position = "dodge", x = sex, y = body_mass_g, col = species, ) vdiffr::expect_doppelganger(test_name, p) }) set_blanket()